THE DETERMINATION OF MILLENIAL SCALE EROSION RATES USING COSMOGENIC ANALYSIS OF ¹⁰Be IN THE SHENANDOAH NATIONAL PARK, VA

> Jane Duxbury Progress Report Advisor: Paul Bierman

UNTING, FISHING, TRAPPING OF RESPASSING FOR ANY PURPOS IS STRICTLY FORBIDDEN VOLATORS WILL BE PROSECUT

Name _____

Outline

Introduction

Progress to Date

* Results

Discussion

Time line

Physical Setting

Introduction

Determine erosion rates within the Park

Appalachian Mountains paradox

Paul Bierman:

Proably better as 10⁴-10⁵ year time scale given the rates you have measured 10³ to 10⁶ year timescale ing erosion as a function of lithology Hack's (1960) model of dynamic ilibrium and steady state erosion

tionship between grain size and Be concentration (Matmon et al. 2003)

Blue Ridge Mountains, VA

Progress To Date - GIS

Senerated a database of drainage basins that included criteria such as basin size, location, lithology, mean slope, and elevation range using:

- DEM's (Digital Elevations Models)
- NHD Stream Data (National Hydrography Dataset)

Map Showing the delineated basins and sample sites*

*There are data for these samples sites

Progress To Date - Sample Collection

- 36 samples from active river or stream channels (0.5 - 1 kg of sediment)
- All samples sieved to the 0.25 - 0.85 mm size fraction in the field

Sample Processing

Initial sample preparation followed by quartz dissolution, column separation and target preparation

Data

- The initial 16 samples gathered in the fall of 2005 have been processed. These samples comprised the four grain size splits (0.25 – 0.85 mm, 0.85 – 2 mm, 2 - 10 mm, > 10 mm) of the four lithologies found within the boundaries of the Shenandoah National Park.
- The samples were taken to Lawrence Livermore National Laboratories where they were measured on the accelerator mass spectrometer (AMS) in order to determine the ⁹Be/¹⁰Be ratio, and the concentration of ¹⁰Be in each sample.
- The concentrations can then be normalized using the altitude-latitude scaling function of Lal (1991) and erosion rates modeled using methods presented in Bierman and Steig (1996).

Results

SH-01 - Granite	¹⁰ Be Conc. (10 ⁵ atoms/g)		ErosionRates (m/My)	
0.25-0.85 mm	3.48 ± 0.10		14.67 ± 1.14	
0.85-2 mm	3.42 ± 0.14		14.95 ± 1.23	
2-10 mm	3.06 ± 0.14		16.74 ± 1.44	
>10 mm	2.29 ± 0.07		22.51 ± 1.77	
SH-02 - Metabasalt				
0.25-0.85 mm	1.02 ± 0.29		4.25 ± 0.35	
0.85-2 mm	8.73	Paul Bierman:1These are too4These are too5precise given all5the3uncertaintiesl3would round to7whole numbers07		1
2-10 mm	7.90			4
>10 mm	7.89			
SH-03 - Quartzite				
0.25-0.85 mm	7.44			3
0.85-2 mm	5.84			7
2-10 mm	5.06			D
>10 mm	5.95			7
SH-04 - Siliciclastic				
0.25-0.85 mm	4.04 ± 0.13		12.30 ± 0.97	
0.85-2 mm	3.74 ± 0.12		13.32 ±1.05	
2-10 mm	4.15 ± 0.13		11.97 ± 0.95	
>10 mm	5.65 ± 0.18		8.71 ± 0.69	

Discussion – Grain Size Analysis

 In 3 of the 4 samples analyzed, smaller grains have a greater ¹⁰Be concentration than larger grains.

• The differences in ¹⁰Be concentrations are not great, ~23%, indicating that grain size has little consistent effect on measured ¹⁰Be concentration and thus modeled erosion rates.

1200 Peter M. Bro

Discussion – Erosion Rate vs. Lithology

¹⁰Be Concentration vs. Lithology by Grain Size (error bars = 1σ)

Shenandoah Erosion Rates (0.25 - 0.85 mm grain size fraction): - granite (14.7 m/My) - metabasalt (4.3 m/My) - quartzite (6.7 m/My) - siliciclastic (12.3 m/My)

Discussion – Erosion Rates

Slope Influences ¹⁰Be Erosion Rates in the Appalachians

• Matmon et al., (2003), 25 to 30 m/My for metasandstone in the steep **Great Smoky Mountains.** Reuter et al., (2005), 4 -54 m/My in Susquehanna **River basin for shale,** sandstone, and schist. U/Th/He near the Blue **Ridge Escarpment by** Spotila et al., (2004). Fission tracks in the **Blue Ridge and the** southern Appalachians by Naeser et al., (2005, 2006), 20 m/My.

Future Work – Statistical Analysis

- To test the significance of erosion rate change as a function of slope and basin size to test the hypothesis that isotope concentration (set by the erosion rate) is a function of slope (linear regression).
- One-way ANOVA analysis for the four lithologies in order to test for significant differences in erosion rates between the lithologies.
- Contrast the four erosion rates of the lithologies to see if there are any differences between them, which will enable me to test Hack's theory of *dynamic equilibrium*.
- Spatial autocorrelation to measure the level of interdependence between the variables in order to identification of patterns which may reveal an underlying process.

Timeline

Fall 2006	Presented poster of initial data at GSA Further processing of second sample set
Spring 2007	Take second sample set to LLNL for AMS analysisData analysis of AMS results (Jan/Feb)
Summer 2007	Start writing thesis
Fall 2007	 Complete thesis Prepare papers for journal submissions (including invited GSA special paper- Geology and Related Studies of Shenandoah National Park and Vicinity, Virginia) Present final work at GSA annual meeting Defend Thesis

Acknowledgements

- Paul Bierman for all of his help and support
- Scott Southworth and Milan Pavich of the USGS for providing funding and support
- Corey Coutu for his field assistance
- Jen Larsen for lab support
- Gets, Luke, Colleen, Matt and all the geo grads and faculty

Questions?