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Extremal numbers
Theorem ([Mantel 1907])
The mazimum size of a Kz-free graph of order n is |n2/4].

Theorem ([Turan 1941))

The mazimum size of a K, 1-free graph of order n 1s

s n®  s(p—s)
p) 2 2p

where s is the remainder of n/p. Further, this is witnessed
by a unique graph for every n.

Theorem ([Erdés-Stone 1946, Erdés-Simonovits 1966))

The mazimum size of an H-free graph of order n 1s

1 n?
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G is H-saturated if
» G is H-free, and
» the addition of any extra edge to G creates a copy of H.

The saturation number sat(n, H) is the minimum size of an
H-saturated graph of order n.



Saturation numbers (maximum — maximal)

G i1s H-saturated if
» G is H-free, and

» the addition of any extra edge to G creates a copy of H.

The saturation number sat(n, H) is the minimum size of an
H-saturated graph of order n.

Theorem ([Erdés-Hajnal-Moon 1964])

sat(n,Kpi1) =(p—1)(n—p+1) + (pgl), and this s
witnessed by a unique graph for every n.



The graph of Erdés, Hajnal, and Moon

The unique graph of minimum size over all Ks-saturated graphs
of order 9



Semisaturation numbers

G is H-semisaturated if
> GisH-free;and
» the addition of any extra edge to G creates a copy of H.

The semasaturation number ssat(n, H) is the minimum size of
an H-semisaturated graph of order n.

Theorem ([Erdés-Hajnal-Moon 1964])
ssat(n, Kpi1) =sat(n, Kpi1) =(p—1)(n—p+ 1)+ (pgl), and
this 1s witnessed by a unique graph for every n.
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Saturation and semisaturation numbers

Example (Py)

~TT 11>

Since G is Py-saturated, ssat(n, Ps) < sat(n, Ps) < [n/2] + 1.

For any graph H without an isolated edge, ssat(n, Ps) > |n/2].
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T =11 >

[Kaszonyi-Tuza 1986]: sat(n, Pg) =n — [n/a¢], where
{3~2m_1—2: {=2m
ay =

4.2m1_92. (=2m+1

[Burr 2017]: ssat(n, Pg) =n — |n/b¢] + O(1), where
by = L3(e-1)J
2

t=6 —eo—0 oo oo



Saturation and semisaturation numbers

Example (P,)
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Trees [Faudree—Faudree—Gould—J acobson 2009]

Theorem
Let T # Ky p—1 be a tree of order p > 5 with second smallest
degree 6. If n > (d —1)3, then sat(n, T) > (65 — 1)n/2.
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Trees [Faudree—Faudree—Gould—J acobson 2009]

Theorem
Let T # Ky p—1 be a tree of order p > 5 with second smallest
degree 6. If n > (d —1)3, then sat(n, T) > (65 — 1)n/2.

Let S; : denote the double star obtained by joining the centers
of Kl'sfl and Kl,tfl.

So5 = >—0—< Saa = >—<

» sat(n, S2p—2) =n—|(n+p—2)/p], which is minimum
over all trees of order p.
» For n > s% and s < ¢t, sat(n, Sss) = (s —1)n/2+ O(1), and
s—1
2

n < sat(n, Ss ) < %n + O(1).
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Lower bounds on ssat(n, H)

For each edge uv in a graph H, define

wto(uv) = max{d(u),d(v)}—1,
and let kg = min,cg(m) {who(uv)}.
Remark

If z and y are nonadjacent vertices in an H-semisaturated
graph, then at least one of them has degree at least k.

Theorem ([Cameron-Puleo 2022|)

For any graph H and integer n > |H|,

ssat(n, H) > w - g — 0(1),

where w = miny, ¢ g(g) {wto(uwv) + [N (u) N N(v)|}.



Lower bounds on ssat(n, H)

T, 1]
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For each edge uv in a graph H, define
wti(uv) = max{d(w) :w e (N(u) —v)U (N(v) —u)}
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not S 3-saturated

For each edge uv in a graph H, define
wti(uwv) = max{d(w):w e (N(u) —v)U (N(v) —u)}

Let

ki = min {wt;(ww)} and k/= min {wt;(uv)}.
weE(H) wto (uv)=ko



Lower bounds on ssat(n, H)

Theorem ([Buchanan-Rombach 2024])
For any graph H and integer n > |H]|,

ssat(n, H) > <ko+ f — ko) n_ O(1).

kl+1
Further, if k1 > ko, then

ssat(n, H) > (ko-i- ki — ko) e

(1)

(2)
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In other words, the average degree of an H-semisaturated graph
cannot be much smaller than that of a graph with minimum
degree kg in which

(1) every vertex of degree ky has a neighbor of degree k.



Lower bounds on ssat(n, H)

In other words, the average degree of an H-semisaturated graph
cannot be much smaller than that of a graph with minimum
degree kg in which

(1) every vertex of degree ky has a neighbor of degree k.
(2) every vertex has a neighbor of degree k/ (when k; > ko).



Triangle-free graphs H

Theorem ([Buchanan-Rombach 2024])

Let H be a triangle-free graph such that k| > ko +/2ko + 1,
or at least one degree-(kg + 1) endpoint of every edge
mintmizing wWto has a netghbor of degree k| and k| > ko + 2.
For any n > |H|,

ssat(n, H) > <ko + WD) Z

——0(1). 3
v CORNC)
If, in addition to either of the above conditions, ki > ko,

then 1 ke
1+ — n
- — | = —0O(1). 4
A ) CORNNCY

ssat(n, H) > <ko + 5



Triangle-free graphs H

Nonadjacent degree-ky vertices z, y in H-semisaturated graph



Triangle-free graphs H

If every edge in H minimizing wto has a degree-(kg + 1)
endpoint with a neighbor of degree at least ky:

Nonadjacent degree-ky vertices x, y in H-semisaturated graph



Double stars

Let S; : be obtained by joining the centers of K; ;1 and Kj ;1

The double star Sy 5

Theorem ([Faudree-Faudree-Gould-Jacobson 2009])
For any2<s <t andn > s,

-1 —1 21
s 5 n < sat(n, Ss ) < Sy 8 , and

-1 —1)2+8
s n < sat(n, Ss ) < %n — u




Double stars

Let S; : be obtained by joining the centers of K; ;1 and Kj ;1

The double star Sy 5

Theorem ([Buchanan-Rombach 2024])
Forany2<s<tandn>s+t,

t+1)n—s(t— 2 2
ssat(n, S,) > ST n stz s2) 5T
* 2t +4 8




Double stars

Let S; : be obtained by joining the centers of K; ;1 and Kj ;1

The double star Sy 5

Theorem ([Buchanan-Rombach 2024])
Forany2<s<tandn>q(2t+4)+s,

s(t+1)n+s(s—1) [sw ,

t(n, Ss¢) <
sat(n, Si.1) e

where ¢ = max{1, |s/2] —1}.



Double stars

Let S; : be obtained by joining the centers of K; ;1 and Kj ;1

The double star Sy 5

A

An Sy 5-saturated graph



Double stars

Theorem ([Buchanan—Rombach 2024])

For any 2 < s < t, there exists ng = ng(s, t) such that, for
all n > ny,

s(t+1)n—s(t—s+2)

t(n, Ss¢) 2 ;
ssat(n, 5,1 -

and this is sharp when n = s (mod 2t + 4).

<P

A graph of minimum size over all S; 4-(semi)saturated graphs of
order 39
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» proper if incident edges have different colors;
» rainbow if all edges have different colors;

» rainbow H-free if no H subgraph is rainbow.
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order n
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(proper) Rainbow saturation

An edge coloring of a graph is
» proper if incident edges have different colors;
» rainbow if all edges have different colors;

» rainbow H-free if no H subgraph is rainbow.

A graph is ratnbow H -saturated if it is edge-maximal w.r.t.
having a rainbow H-free proper edge coloring.

sat*(n, H) = minimum size of a rainbow H-saturated graph of
order n

Theorem ( [BushaW—J ohnston-Rombach 2022] )

sat*(n, H) = O(n) when H contains no induced even cycle.



(proper) Rainbow saturation

An edge coloring of a graph is
» proper if incident edges have different colors;
» rainbow if all edges have different colors;

» rainbow H-free if no H subgraph is rainbow.

A graph is ratnbow H -saturated if it is edge-maximal w.r.t.
having a rainbow H-free proper edge coloring.

sat*(n, H) = minimum size of a rainbow H-saturated graph of
order n

Theorem ([Various sources))
sat*(n, H) = O(n) for any graph H.
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(proper) Rainbow saturation

Example (Py)

Theorem ([Bushaw-Johnston-Rombach 2022])

4
sat*(n, Py) = ik + 0(1)



(proper) Rainbow saturation

Example (Py)

ie [ ] -

Theorem ([Lane-Morrison 2024])

-t

_t42

n+t+1
t*(n, S2t) =n—
satt(n,Sp) =n — | "1 12 |

= n
t+3

+0(1)
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Double stars

Theorem ([Buchanan—Rombach 2024])

For any 2 < s < t, there exists ng = ng(s, t) such that, for
all n > ny,

t+1\n s(t—s+2)
t >s(—— )22
ssat(n,Ss ) > s (t+2> 5 214

Note that sat*(n, H) > ssat(n, H).

Corollary

For any 2 < s < t, there exists ng = ng(s, t) such that, for
all n > ny,

t+1 t— 2

t+2/)2  2t+4a



Double stars

Theorem ([Buchanan—BushaW—J ohnston-Rombach 2025*])
For any 2 < s < t,

s+t n
t* S < — | =+ O(1).
sat*(n,Se) < s (511 ) 7+ o)
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Double stars

Theorem ([Buchanan—BushaW—J ohnston-Rombach 2025*])
For any 2 < s < t,

s+t n
t* S < — | =+ O(1).
sat*(n,Se) < s (15547 ) 5+ Ol)

— .
o i

S34 G



Double stars

Theorem ([Buchanan—BushaW—J ohnston-Rombach 2025*])
For any 2 < s < t,

s+t n
t*(n,8,;) <s|——— ) =+ 0(1).
sat™(n, 55,1) S<s+t+1>2Jr (1)

S3.4 G



Thank you!
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