On the last new vertex visited by a random walk in a directed graph

Calum Buchanan

University of Vermont

SAMSA 2023

Joint work with Paul Horn and Puck Rombach

Result of collaboration at 2021 Masamu Advanced Studies Institute

Cover tours

A random cover tour in a (directed) graph is a random walk which, at each step, travels with equal probability to any (out-)neighbor of its current vertex and ends once every vertex has been visited.

Cover tours

A random cover tour in a (directed) graph is a random walk which, at each step, travels with equal probability to any (out-)neighbor of its current vertex and ends once every vertex has been visited.

Cycles and complete graphs have the property that a random cover tour, starting at any vertex, is equally likely to end at any other vertex.

Ronald Graham asked if there are any other such graphs.

Undirected graphs

We denote by L(u, v) the event that v is the last vertex visited by a random cover tour of a graph G starting at vertex u.

Undirected graphs

We denote by L(u, v) the event that v is the last vertex visited by a random cover tour of a graph G starting at vertex u.

Lemma (Lovász-Winkler, 1993)

If G is connected and $uv \notin E(G)$, then there is a neighbor x of u such that $\mathbb{P}(L(x,v)) \leqslant \mathbb{P}(L(u,v))$. Further, this inequality is strict if there is a cover tour of G from u to v which does not revisit u.

Undirected graphs

We denote by L(u, v) the event that v is the last vertex visited by a random cover tour of a graph G starting at vertex u.

Lemma (Lovász-Winkler, 1993)

If G is connected and $uv \notin E(G)$, then there is a neighbor x of u such that $\mathbb{P}(L(x,v)) \leqslant \mathbb{P}(L(u,v))$. Further, this inequality is strict if there is a cover tour of G from u to v which does not revisit u.

Theorem (Lovász-Winkler, 1993)

Cycles and complete graphs are the only undirected graphs with the property that $\mathbb{P}(L(u,v)) = \mathbb{P}(L(u,w))$ for any three distinct vertices u, v, and w.

Directed graphs

We denote by L(u, v) the event that v is the last vertex visited by a random cover tour of a digraph G starting at vertex u.

Lemma (B.-Horn-Rombach, 2023)

If G is strongly connected and $uv \notin E(G)$, then there is an out-neighbor x of u such that $\mathbb{P}(L(x,v)) \leq \mathbb{P}(L(u,v))$. Further, this inequality is strict if there is a cover tour from u to v which does not revisit u.

Theorem (B.-Horn-Rombach, 2023)

Cycles and complete graphs* are the only directed graphs with the property that $\mathbb{P}(L(u,v)) = \mathbb{P}(L(u,w))$ for any three distinct vertices u, v, and w.

^{*}with all edges considered bidirected

It suffices to show that, in any digraph with the property that $\mathbb{P}(L(u,v)) = \mathbb{P}(L(u,w))$ for any three distinct vertices u,v, and w, every edge is bidirected.

It suffices to show that, in any digraph with the property that $\mathbb{P}(L(u,v)) = \mathbb{P}(L(u,w))$ for any three distinct vertices u, v, and w, every edge is bidirected.

By our lemma, if G is a digraph with the above property, and if T is a cover tour in G from u to v, then either $uv \in E(G)$ or u appears at least twice in T.

Suppose, for a contradiction, that $uv \notin E(G)$ but $vu \in E(G)$. Consider a cover tour T from u to v of minimum length.

Let v_1 be the last new vertex visited by the walk which first takes vu then follows T.

Let v_1 be the last new vertex visited by the walk which first takes vu then follows T.

Minimality of $T \implies v_1$ appears only once $\implies vv_1 \in E(G)$.

Let v_1 be the last new vertex visited by the walk which first takes vu then follows T.

Minimality of $T \implies v_1$ appears only once $\implies vv_1 \in E(G)$.

Let v_1 be the last new vertex visited by the walk which first takes vu then follows T.

Minimality of $T \implies v_1$ appears only once $\implies vv_1 \in E(G)$.

Let v_1 be the last new vertex visited by the walk which first takes vu then follows T.

 $\text{Minimality of } T \implies v_1 \text{ appears only once } \implies vv_1 \in E(G).$

We now show that $v_1v\in E(G)$ by finding a cover tour from v_1 to v which visits v_1 only once.

We now show that $v_1v\in E(G)$ by finding a cover tour from v_1 to v which visits v_1 only once.

Part (I) starts at v_1

We now show that $v_1v\in E(G)$ by finding a cover tour from v_1 to v which visits v_1 only once.

Part (I) starts at v_1 and stops at v_2 .

Part (II) starts at v_2 and ends the cover tour at v.

If there is an unseen vertex in B and C, Part (I) becomes:

Any remaining unseen vertices have one copy in A and another in B or C. Let y be the last unseen vertex in A.

If y has a copy in B, Part (II) becomes:

Otherwise, y has a copy in C. Part (II) becomes:

Similarly, we have $v_{i+1}v_i\in E(\mathit{G})$ for each $i\in\{1,\ldots,k\}$.

In fact, the edge v_1v and each $v_{i+1}v_i$ is in T, by minimality. But u appears twice in T, and not twice in C, a contradiction.

Thank you!

References

L. Lovász, P. Winkler, A note on the last new vertex visited by a random walk, *J. Graph Theory*, Vol. 17, No. 5, (1993) 593-596.