EXPRESSING GRAPHS AS SYMMETRIC DIFFERENCES OF CLIQUES Calum Buchanan*, Christopher Purcell, & Puck Rombach

Any finite simple graph G = (V, E) can be represented by a collection of cliques in the complete graph on V whose symmetric difference is G. For instance, consider $\{\{u, v\} \mid uv \in E\}$. But we can often do better.

Example 1.

 $\underbrace{\hspace{1.1cm}}^{\bullet} = \underbrace{\hspace{1.1cm}}^{\bullet} \bigtriangleup \hspace{1.1cm} \bullet \underbrace{\hspace{1.1cm}}^{\bullet}$

Question. What is the minimum cardinality of such a collection of cliques?

Definition 2. A clique construction of G is a collection \mathscr{C} of subsets of V such that, for each pair $u, v \in V, uv \in E$ if and only if u and v appear together an odd number of times in \mathscr{C} . The minimum cardinality of a clique construction of G is the clique-build number of G, denoted by $c_2(G)$.

Equivalent problems

The problem of expressing a graph G as a sum of cliques modulo 2 was posed by Vatter [1].

Subgraph complementation [4]

Replace an induced subgraph of G by its graph complement.

Faithful orthogonal representations

Given a field \mathbb{F} , assign to each vertex of G a vector from \mathbb{F}^d so that two vertices are adjacent if and only if they are represented by non-orthogonal vectors. Lovasz [3] introduced these representations over \mathbb{R} .

Dot product representations

Orthogonal representations in which the dot product of two vectors representing adjacent vertices is 1.

UPPER BOUNDS

A number of upper bounds for $c_2(G)$ are obtained by its equivalence to the minimum dimension of a faithful orthogonal representation of G over \mathbb{F}_2 . Given a clique construction \mathscr{C} of G, assign to each vertex v an incidence vector with a 1 in the *i*th slot if v appears in the *i*th clique in \mathscr{C} , and a 0 otherwise. The equivalence follows, as two vectors are orthogonal over \mathbb{F}_2 if and only if they share an even number of 1's.

We denote by $M(\mathscr{C})$ the *clique-incidence matrix* whose rows are the aforementioned vectors. For example, the matrix corresponding to the construction \mathscr{C} in Example 1 is

$$M(\mathscr{C}) = \begin{pmatrix} 1 & 0\\ 1 & 1\\ 1 & 1\\ 1 & 1 \end{pmatrix}.$$
(1)

Propositions 3 and 4 are corollaries of Theorems 1 and 3 in [4], obtained by this equivalence. Let n denote the order of a graph G.

Proposition 3. For any graph G, $c_2(G) \le n - 1$.

Proposition 4. For any graph G (n > 2) other than P_n , $c_2(G) \le n-2$.

Theorem 5 ([2]). For any graph G with vertex cover number $\tau(G)$, $c_2(G) \leq 2\tau(G)$.

Proof. For each $v \in V(G)$, we can build edges to any subset $S \subseteq N(v)$ in two steps using cliques S and $S \cup \{v\}$. Given a minimum vertex cover Uof G, or set of vertices spanning the edges of G, build the edges incident to each $u \in U$ which have not already been built in at most two steps. \Box

Notice that $c_2(G) < 2\tau(G)$ if any of the cliques we use are singletons, that is, if some vertex in U has only one neighbor outside of U.

MINIMUM RANK

Let $M = M(\mathscr{C})$ be a clique-incidence matrix. The off-diagonal entry (i, j) of MM^T (mod 2) is 0 if and only if the vertices corresponding to the *i*th and *j*th rows of M are nonadjacent. The *minimum* rank of G over \mathbb{F} is the minimum rank over all matrices in $\mathbb{F}^{n \times n}$ whose off-diagonal zeros match those of the adjacency matrix of G. Since rank $(MM^T) \leq \operatorname{rank}(M) \leq c_2(G)$, we have

$$\operatorname{mr}(G, \mathbb{F}_2) \le c_2(G).$$

(2)

Theorem 6. For any forest F and field \mathbb{F} , we have $c_2(F) = mr(F, \mathbb{F})$.

There is a close relationship between $c_2(G)$ and $mr(G, \mathbb{F}_2)$: the numbers differ by at most 1, and do so only if $c_2(G)$ is odd. On the other hand, these invariants have important differences. The minimum rank of G with components G_1, \ldots, G_ℓ is $\sum_{i=1}^{\ell} mr(G_i, \mathbb{F})$, but this is not the case for $c_2(G)$. While $c_2(W_5) = 3$ and $c_2(K_2) = 1$, we have

Theorem 7. For any graph G, the following are equivalent.

- *i.* $c_2(G) = mr(G, \mathbb{F}_2) + 1;$
- ii. there is a unique matrix A of minimum rank over F₂ which fits G, and every diagonal entry of A is 0;
- iii. there is an optimal clique construction of G in which every vertex appears an even number of times;
- iv. for every component G' of G, $c_2(G') = mr(G') + 1$.

FORBIDDEN SUBGRAPHS

The graph property $c_2(G) \leq k$ is hereditary. We have shown in [2] that it is defined by a finite set of minimal forbidden induced subgraphs. For odd k, we have $c_2(G) = k$ whenever $mr(G, \mathbb{F}_2) =$ k, and $c_2(G) \leq k$ whenever $mr(G, \mathbb{F}_2) < k$. Thus, the sets of minimal forbidden induced subgraphs for $\{G : mr(G, \mathbb{F}_2) \leq k\}$ and $\{G : c_2(G) \leq k\}$ are the same.

This is not the case when k is even. We exhibit the sets of minimal forbidden induced subgraphs for $c_2(G) \leq 2$ and $mr(G, \mathbb{F}_2) \leq 2$, labeled A and B respectively, below.

REFERENCES

- V. Vatter. Terminology for expressing a graph as a sum of cliques (mod 2), URL (version: 2018-12-15): https://mathoverflow.net/q/317716
- [2] C. Buchanan, C. Purcell, and P. Rombach. Expressing graphs as symmetric differences of cliques of the complete graph, arXiv:2101.06180, 2021.
- [3] L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information Theory, 1979.

[4] V. Alekseev and V. Lozin. On orthogonal representations of graphs. Discrete Mathematics, 2001.

