Expressing graphs as symmetric differences of cliques in the complete graph

Calum Buchanan¹

Joint work with Christopher Purcell² and Puck Rombach¹

¹University of Vermont ²University of West Bohemia

Graphs as symmetric differences of cliques

Let G be a finite simple graph on n vertices.

One can always express G as the *symmetric difference* of a collection of cliques in the complete graph on n vertices.

That is, every edge of G appears in an odd number of cliques, every non-edge in an even number.

Graphs as symmetric differences of cliques

Let G be a finite simple graph on n vertices.

One can always express G as the *symmetric difference* of a collection of cliques in the complete graph on n vertices.

That is, every edge of G appears in an odd number of cliques, every non-edge in an even number.

For instance, take the collection $\{\{u,v\}: uv \in E(G)\}$. But we can often do better:

The problem and definitions Faithful orthogonal representations Minimum rank over \mathbb{F}_2

Question

What is the minimum cardinality of a collection of cliques whose symmetric difference is G?

Question

What is the minimum cardinality of a collection of cliques whose symmetric difference is G?

Definitions. A *clique construction* of G is a collection $\mathscr C$ of subsets of V(G) in which a pair of vertices u, v are adjacent if and only if u and v appear together an odd number of times in $\mathscr C$.

The minimum cardinality of a clique construction of G is the *clique-build number* of G, denoted $c_2(G)$.

Question

What is the minimum cardinality of a collection of cliques whose symmetric difference is G?

Definitions. A *clique construction* of G is a collection \mathscr{C} of subsets of V(G) in which a pair of vertices u, v are adjacent if and only if u and v appear together an odd number of times in \mathscr{C} .

The minimum cardinality of a clique construction of G is the *clique-build number* of G, denoted $c_2(G)$.

We use "clique-building" terminology not for lack thereof. . . .

Equivalent terminology

The following are equivalent either to taking symmetric differences of cliques or to finding $c_2(G)$.

- Subgraph complementation.¹
- ② Faithful orthogonal representations (over \mathbb{F}_2).
- **3** Dot product representations (over \mathbb{F}_2).³
- Sum modulo 2 of cliques.⁴

¹M. Kaminski, V. Lozin, and M. Milanic. Recent developments on graphs of bounded clique-width. Discrete Appl. Math. 157(12), 2747–2761 (2009)

²L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information Theory. 25(1):1–7 (1979)

³G. Minton. Dot product representations of graphs. (2008)

 $^{^4}$ V. Vatter, Terminology for expressing a graph as a sum of cliques (mod 2), URL (version: 2018-12-15): https://mathoverflow.net/q/317716

Faithful orthogonal representations

Given a simple graph G and a field \mathbb{F} , a faithful orthogonal representation of G over \mathbb{F} of dimension d is a map $f:V(G)\to \mathbb{F}^d$ such that

$$uv \notin E(G) \iff f(u) \perp f(v).$$

Faithful orthogonal representations

Given a simple graph G and a field \mathbb{F} , a faithful orthogonal representation of G over \mathbb{F} of dimension d is a map $f:V(G)\to \mathbb{F}^d$ such that

$$uv \notin E(G) \iff f(u) \perp f(v).$$

The minimum dimension of a faithful orthogonal representation of G, denoted $d(G, \mathbb{F})$, is particularly well-studied over \mathbb{R} .

In the case $\mathbb{F} = \mathbb{F}_2$, this problem is equivalent to finding $c_2(G)$.

What is the equivalence?

Equivalence

Given a clique construction $\mathscr{C} = \{C_1, C_2, \dots, C_d\}$ of G, assign to each vertex v an incidence vector $\mathbf{v} \in \mathbb{F}_2^d$ with entry

$$\mathbf{v}_i = \begin{cases} 1: & v \in C_i; \\ 0: & \text{otherwise.} \end{cases}$$

Equivalence

Given a clique construction $\mathscr{C} = \{C_1, C_2, \dots, C_d\}$ of G, assign to each vertex v an incidence vector $\mathbf{v} \in \mathbb{F}_2^d$ with entry

$$\mathbf{v}_i = \begin{cases} 1: & v \in C_i; \\ 0: & \text{otherwise.} \end{cases}$$

Two vertices appear together an even number of times in $\mathscr C$ if and only if they are represented by orthogonal vectors.

A faithful orthogonal representation of G over \mathbb{F}_2 induces a clique construction of G in a similar way.

Upper bounds

By this equivalence, we obtain bounds on $c_2(G)$ from bounds on $d(G, \mathbb{F}_2)$, and vice-versa.

For example, it is known that $d(G, \mathbb{F}_2) \leq n-2$ when G is not a path.¹

Thus, for any graph which is not a path,

$$c_2(G) \leq n-2$$
.

¹V. Alekseev and V. Lozin. On orthogonal representations of graphs. Discrete Mathematics 226.1-3 (2001): 359-363.

Upper bounds

On the other hand, we can prove new upper bounds on $d(G, \mathbb{F}_2)$ by bounding $c_2(G)$.

Theorem (CB, Purcell, Rombach)

For any graph G with vertex cover number $\tau(G)$,

$$c_2(G) \leq 2\tau(G)$$
.

Upper bounds

On the other hand, we can prove new upper bounds on $d(G, \mathbb{F}_2)$ by bounding $c_2(G)$.

Theorem (CB, Purcell, Rombach)

For any graph G with vertex cover number $\tau(G)$,

$$c_2(G) \leq 2\tau(G).$$

Idea of proof. Let U be a minimum vertex cover of G. Choose vertices in U one by one, and build the incident edges which have not yet been built in two steps, using the "star strategy" shown in the example.

Incidence matrices

The *clique-incidence matrix*, $M = M(\mathscr{C})$, is the $n \times |\mathscr{C}|$ matrix whose rows are the incidence vectors for the clique construction \mathscr{C} .

Incidence matrices

The *clique-incidence matrix*, $M = M(\mathscr{C})$, is the $n \times |\mathscr{C}|$ matrix whose rows are the incidence vectors for the clique construction \mathscr{C} .

The matrix $A = MM^T \pmod{2}$ has off-diagonal entry 0 if and only if the corresponding vertices are nonadjacent.

Incidence matrices

The *clique-incidence matrix*, $M = M(\mathscr{C})$, is the $n \times |\mathscr{C}|$ matrix whose rows are the incidence vectors for the clique construction \mathscr{C} .

The matrix $A = MM^T \pmod{2}$ has off-diagonal entry 0 if and only if the corresponding vertices are nonadjacent.

Example

$$G = \{ \bullet, \mathscr{C} = \{ \bullet, \bullet \} \}, M = M(\mathscr{C}) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}, \text{ and}$$

$$MM^{T} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

The minimum rank problem

An $n \times n$ matrix A over \mathbb{F} is said to *fit* G if the off-diagonal zeros of A precisely match those of the adjacency matrix of G.

The minimum rank problem

An $n \times n$ matrix A over \mathbb{F} is said to *fit* G if the off-diagonal zeros of A precisely match those of the adjacency matrix of G.

The minimum rank of G over \mathbb{F} is the minimum rank over all matrices with entries in \mathbb{F} which fit G, denoted $mr(G, \mathbb{F})$.

An $n \times n$ matrix A over \mathbb{F} is said to *fit* G if the off-diagonal zeros of A precisely match those of the adjacency matrix of G.

The *minimum rank of G over* \mathbb{F} is the minimum rank over all matrices with entries in \mathbb{F} which fit G, denoted $mr(G, \mathbb{F})$.

If $M = M(\mathscr{C})$ is a clique-incidence matrix for G, then MM^T fits G.

Since $rank(MM^T) \le rank(M) \le d$, we obtain the bound

$$\operatorname{mr}(G, \mathbb{F}_2) \leq \operatorname{c}_2(G).$$

Additivity

The minimum rank of a graph G is additive, in the sense that the minimum rank of G is equal to the sum of the minimum ranks of its components.

Additivity

The minimum rank of a graph G is additive, in the sense that the minimum rank of G is equal to the sum of the minimum ranks of its components.

The clique-build number does not behave in the same way.

We can check that $c_2(W_5) = 3$ and $c_2(K_2) = 1$, but we have the following clique construction of $W_5 + K_2$.

Example

Example

What is special about W_5 ?

- $c_2(W_5)$ is odd;
- Every vertex of W_5 appears an even number of times in some optimal construction.

Example

What is special about W_5 ?

- $c_2(W_5)$ is odd;
- Every vertex of W_5 appears an even number of times in some optimal construction.

This tells us that the minimum rank of a graph over \mathbb{F}_2 and its clique-build number are not always equal.

In many cases, we do have $c_2(G) = mr(G, \mathbb{F}_2)$, e.g. forests.

The minimum rank of a forest is independent of the field.¹

¹N. Chenette, S. Droms, L. Hogben, R. Mikkelson, and O. Pryporova. Minimum rank of a graph over an arbitrary field. The Electronic Journal of Linear Algebra, 2007.

The minimum rank of a forest is independent of the field.

Furthermore, the minimum rank problem is solved for forests. It has been reduced to finding the minimum size of a *path cover*, or a collection of disjoint paths which cover the vertex set, p(G).¹

Lemma

For any tree T, $mr(T, \mathbb{R}) = |T| - p(T)$.

¹C. Johnson and A. Duarte. The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree. Linear and Multilinear Algebra, 1999.

Theorem (CB, Purcell, Rombach)

For any forest G and field \mathbb{F} ,

$$c_2(G) = |G| - p(G) = mr(G, \mathbb{F}).$$

Theorem (CB, Purcell, Rombach)

For any forest G and field \mathbb{F} ,

$$c_2(G) = |G| - p(G) = mr(G, \mathbb{F}).$$

Idea of proof.

- $mr(G, \mathbb{F}_2) = mr(G, \mathbb{R}) = |T| p(T) \le c_2(G)$.
- An algorithm for minimum path covers.¹
- The star-strategy.

¹L. Hogben and C. Johnson. Path covers of trees. Pre-print. URL:https://orion.math.iastate.edu/lhogben/research/HJpathcover.pdf.

Hogben and Johnson's algorithm for minimum path covers:

- If T is a spider graph, or generalized star, take a maximal path through the center and all remaining paths.
- ② Otherwise, pick off *pendant* spiders one-by-one to obtain an optimal path cover of \mathcal{T} .

- If T is a spider graph, or generalized star, take a maximal path through the center and all remaining paths.
- ② Otherwise, pick off *pendant* spiders one-by-one to obtain an optimal path cover of T.

- If T is a spider graph, or generalized star, take a maximal path through the center and all remaining paths.
- ② Otherwise, pick off *pendant* spiders one-by-one to obtain an optimal path cover of T.

- If T is a spider graph, or generalized star, take a maximal path through the center and all remaining paths.
- ② Otherwise, pick off *pendant* spiders one-by-one to obtain an optimal path cover of T.

Theorem (CB, Purcell, Rombach)

For any forest G and field \mathbb{F} ,

$$c_2(G) = |G| - p(G) = mr(G, \mathbb{F}).$$

Idea of proof. Let \mathcal{P} be an optimal path cover of G obtained by this algorithm. Note that high degree vertices are internal on their respective paths.

Build the edges of \mathcal{T} which lie in \mathcal{P} and which link low-degree vertices one-by-one.

Build the edges incident to each high-degree vertex v in 2 steps using cliques on N[v] and N(v).

This makes a total of |E(P)| = |G| - p(G) cliques, as desired.

In general, $c_2(G)$ and $mr(G, \mathbb{F}_2)$ are not always equal, but close.

Theorem (CB, Purcell, Rombach)

For any graph G, either

- \mathbf{o} $c_2(G) = mr(G, \mathbb{F}_2)$, or

Theorem (CB, Purcell, Rombach)

For any graph G, either

Idea of proof.

Let A be a matrix of minimum rank which fits G over \mathbb{F}_2 .

If rank(A) is odd, then A decomposes into XX^T for some matrix $X \in \mathbb{F}_2^{n \times k}$, which may be taken as a clique-incidence matrix for G.¹

¹S. Friedland and R. Loewy. On the minimum rank of a graph over finite fields. Linear algebra and its applications, 2012.

Theorem (CB, Purcell, Rombach)

For any graph G, either

- $c_2(G) = mr(G, \mathbb{F}_2)$, or
- $\mathbf{0}$ $c_2(G) = mr(G, \mathbb{F}_2) + 1$, in which case $c_2(G)$ is odd.

Idea of proof.

Let A be a matrix of minimum rank which fits G over \mathbb{F}_2 .

If rank(A) is odd, then A decomposes into XX^T for some matrix $X \in \mathbb{F}_2^{n \times k}$, which may be taken as a clique-incidence matrix for G.

If $c_2(G) \neq \text{mr}(G, \mathbb{F}_2)$, then A does not decompose in this way, so rank(A) is even. Thus, $\text{mr}(G + K_2, \mathbb{F}_2) = \text{mr}(G, \mathbb{F}_2) + 1$ is odd, so $c_2(G + K_2) = \text{mr}(G, \mathbb{F}_2) + 1$ and $c_2(G) \leq \text{mr}(G, \mathbb{F}_2) + 1$.

Theorem (CB, Purcell, Rombach)

Let G be a graph. The following are equivalent.

- $c_2(G) = mr(G, \mathbb{F}_2) + 1;$
- there is a unique matrix A of minimum rank over \mathbb{F}_2 which fits G, and every diagonal entry of A is 0;
- there is an optimal clique construction of G in which every vertex appears an even number of times;
- **o** for every component G' of G, $c_2(G') = mr(G', \mathbb{F}_2) + 1$.

Forbidden induced subgraphs

The property $c_2(G) \le k$ is hereditary and finitely defined. For odd k, the sets of minimal forbidden induced subgraphs for $c_2(G) \le k$ are the same as those for $mr(G, \mathbb{F}_2) \le k$. For even k, this is not so.

Minimal forbidden induced subgraphs

Introduction Main results Forests General graphs

Thank you!

Introduction Main results