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Graphs as symmetric differences of cliques

Let G be a finite simple graph on n vertices.

One can always express G as the symmetric difference of a
collection of cliques in the complete graph on n vertices.

That is, every edge of G appears in an odd number of cliques,
every non-edge in an even number.
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Graphs as symmetric differences of cliques

Let G be a finite simple graph on n vertices.

One can always express G as the symmetric difference of a
collection of cliques in the complete graph on n vertices.

That is, every edge of G appears in an odd number of cliques,
every non-edge in an even number.

For instance, take the collection {{u, v} : uv ∈ E (G )}.
But we can often do better:

Example (The “star strategy”)

= 4
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Question

What is the minimum cardinality of a collection of cliques whose
symmetric difference is G?
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Question

What is the minimum cardinality of a collection of cliques whose
symmetric difference is G?

Definitions. A clique construction of G is a collection C of
subsets of V (G ) in which a pair of vertices u, v are adjacent if and
only if u and v appear together an odd number of times in C .

The minimum cardinality of a clique construction of G is the
clique-build number of G , denoted c2(G ).
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Question

What is the minimum cardinality of a collection of cliques whose
symmetric difference is G?

Definitions. A clique construction of G is a collection C of
subsets of V (G ) in which a pair of vertices u, v are adjacent if and
only if u and v appear together an odd number of times in C .

The minimum cardinality of a clique construction of G is the
clique-build number of G , denoted c2(G ).

We use “clique-building” terminology not for lack thereof. . . .
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Equivalent terminology

The following are equivalent either to taking symmetric differences
of cliques or to finding c2(G ).

1 Subgraph complementation.1

2 Faithful orthogonal representations (over F2).2

3 Dot product representations (over F2).3

4 Sum modulo 2 of cliques.4

1M. Kaminski, V. Lozin, and M. Milanic. Recent developments on graphs of
bounded clique-width. Discrete Appl. Math. 157(12), 2747–2761 (2009)

2L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on
Information Theory. 25(1):1–7 (1979)

3G. Minton. Dot product representations of graphs. (2008)
4V. Vatter, Terminology for expressing a graph as a sum of cliques (mod 2),

URL (version: 2018-12-15): https://mathoverflow.net/q/317716
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Faithful orthogonal representations

Given a simple graph G and a field F, a faithful orthogonal
representation of G over F of dimension d is a map
f : V (G )→ Fd such that

uv 6∈ E (G ) ⇐⇒ f (u) ⊥ f (v).
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Faithful orthogonal representations

Given a simple graph G and a field F, a faithful orthogonal
representation of G over F of dimension d is a map
f : V (G )→ Fd such that

uv 6∈ E (G ) ⇐⇒ f (u) ⊥ f (v).

The minimum dimension of a faithful orthogonal representation of
G , denoted d(G ,F), is particularly well-studied over R.

In the case F = F2, this problem is equivalent to finding c2(G ).

What is the equivalence?
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Equivalence

Given a clique construction C = {C1,C2, . . . ,Cd} of G , assign to
each vertex v an incidence vector v ∈ Fd

2 with entry

v i =

{
1 : v ∈ Ci ;

0 : otherwise.
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Equivalence

Given a clique construction C = {C1,C2, . . . ,Cd} of G , assign to
each vertex v an incidence vector v ∈ Fd

2 with entry

v i =

{
1 : v ∈ Ci ;

0 : otherwise.

Two vertices appear together an even number of times in C if and
only if they are represented by orthogonal vectors.

A faithful orthogonal representation of G over F2 induces a clique
construction of G in a similar way.
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Upper bounds

By this equivalence, we obtain bounds on c2(G ) from bounds on
d(G ,F2), and vice-versa.

For example, it is known that d(G ,F2) ≤ n − 2 when G is not a
path.1

Thus, for any graph which is not a path,

c2(G ) ≤ n − 2.

1V. Alekseev and V. Lozin. On orthogonal representations of graphs.
Discrete Mathematics 226.1-3 (2001): 359-363.
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Upper bounds

On the other hand, we can prove new upper bounds on d(G ,F2)
by bounding c2(G ).

Theorem (CB, Purcell, Rombach)

For any graph G with vertex cover number τ(G ),

c2(G ) ≤ 2τ(G ).
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Upper bounds

On the other hand, we can prove new upper bounds on d(G ,F2)
by bounding c2(G ).

Theorem (CB, Purcell, Rombach)

For any graph G with vertex cover number τ(G ),

c2(G ) ≤ 2τ(G ).

Idea of proof. Let U be a minimum vertex cover of G . Choose
vertices in U one by one, and build the incident edges which have
not yet been built in two steps, using the “star strategy” shown in
the example.
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Incidence matrices

The clique-incidence matrix, M = M(C ), is the n × |C | matrix
whose rows are the incidence vectors for the clique construction C .
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Incidence matrices

The clique-incidence matrix, M = M(C ), is the n × |C | matrix
whose rows are the incidence vectors for the clique construction C .

The matrix A = MMT (mod 2) has off-diagonal entry 0 if and
only if the corresponding vertices are nonadjacent.
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Incidence matrices

The clique-incidence matrix, M = M(C ), is the n × |C | matrix
whose rows are the incidence vectors for the clique construction C .

The matrix A = MMT (mod 2) has off-diagonal entry 0 if and
only if the corresponding vertices are nonadjacent.

Example

G = , C =

{
,

}
, M = M(C ) =

(
1 0
1 1
1 1
1 1

)
, and

MMT =


1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0


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The minimum rank problem

An n × n matrix A over F is said to fit G if the off-diagonal zeros
of A precisely match those of the adjacency matrix of G .
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The minimum rank problem

An n × n matrix A over F is said to fit G if the off-diagonal zeros
of A precisely match those of the adjacency matrix of G .

The minimum rank of G over F is the minimum rank over all
matrices with entries in F which fit G , denoted mr(G ,F).
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c2(G ) and mr(G ,F2)

An n × n matrix A over F is said to fit G if the off-diagonal zeros
of A precisely match those of the adjacency matrix of G .

The minimum rank of G over F is the minimum rank over all
matrices with entries in F which fit G , denoted mr(G ,F).

If M = M(C ) is a clique-incidence matrix for G , then MMT fits G .

Since rank(MMT ) ≤ rank(M) ≤ d , we obtain the bound

mr(G ,F2) ≤ c2(G ).
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Additivity

The minimum rank of a graph G is additive, in the sense that the
minimum rank of G is equal to the sum of the minimum ranks of
its components.
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Additivity

The minimum rank of a graph G is additive, in the sense that the
minimum rank of G is equal to the sum of the minimum ranks of
its components.

The clique-build number does not behave in the same way.

We can check that c2(W5) = 3 and c2(K2) = 1, but we have the
following clique construction of W5 + K2.

Example

4 4 =

Calum Buchanan Graphs as symmetric differences of cliques



Introduction
Main results

Forests
General graphs

Example

4 4 =

What is special about W5?

c2(W5) is odd;

Every vertex of W5 appears an even number of times in some
optimal construction.

Calum Buchanan Graphs as symmetric differences of cliques



Introduction
Main results

Forests
General graphs

Example

4 4 =

What is special about W5?

c2(W5) is odd;

Every vertex of W5 appears an even number of times in some
optimal construction.

This tells us that the minimum rank of a graph over F2 and its
clique-build number are not always equal.

In many cases, we do have c2(G ) = mr(G ,F2), e.g. forests.
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The clique-build number of a forest

The minimum rank of a forest is independent of the field.1

1N. Chenette, S. Droms, L. Hogben, R. Mikkelson, and O. Pryporova.
Minimum rank of a graph over an arbitrary field. The Electronic Journal of
Linear Algebra, 2007.
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The clique-build number of a forest

The minimum rank of a forest is independent of the field.

Furthermore, the minimum rank problem is solved for forests. It
has been reduced to finding the minimum size of a path cover, or a
collection of disjoint paths which cover the vertex set, p(G ).1

Lemma

For any tree T , mr(T ,R) = |T | − p(T ).

1C. Johnson and A. Duarte. The maximum multiplicity of an eigenvalue in
a matrix whose graph is a tree. Linear and Multilinear Algebra, 1999.
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The clique-build number of a forest

Theorem (CB, Purcell, Rombach)

For any forest G and field F,

c2(G ) = |G | − p(G ) = mr(G ,F).
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The clique-build number of a forest

Theorem (CB, Purcell, Rombach)

For any forest G and field F,

c2(G ) = |G | − p(G ) = mr(G ,F).

Idea of proof.

mr(G ,F2) = mr(G ,R) = |T | − p(T ) ≤ c2(G ).

An algorithm for minimum path covers.1

The star-strategy.

1L. Hogben and C. Johnson. Path covers of trees. Pre-print.
URL:https://orion.math.iastate.edu/lhogben/research/HJpathcover.pdf.
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The clique-build number of a forest

Hogben and Johnson’s algorithm for minimum path covers:

1 If T is a spider graph, or generalized star, take a maximal
path through the center and all remaining paths.

2 Otherwise, pick off pendant spiders one-by-one to obtain an
optimal path cover of T .
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The clique-build number of a forest

1 If T is a spider graph, or generalized star, take a maximal
path through the center and all remaining paths.

2 Otherwise, pick off pendant spiders one-by-one to obtain an
optimal path cover of T .

Example
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1 If T is a spider graph, or generalized star, take a maximal
path through the center and all remaining paths.

2 Otherwise, pick off pendant spiders one-by-one to obtain an
optimal path cover of T .
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The clique-build number of a forest

1 If T is a spider graph, or generalized star, take a maximal
path through the center and all remaining paths.

2 Otherwise, pick off pendant spiders one-by-one to obtain an
optimal path cover of T .

Example
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The clique-build number of a forest

Theorem (CB, Purcell, Rombach)

For any forest G and field F,

c2(G ) = |G | − p(G ) = mr(G ,F).

Idea of proof. Let P be an optimal path cover of G obtained by
this algorithm. Note that high degree vertices are internal on their
respective paths.

Build the edges of T which lie in P and which link low-degree
vertices one-by-one.

Build the edges incident to each high-degree vertex v in 2 steps
using cliques on N[v ] and N(v).

This makes a total of |E (P)| = |G | − p(G ) cliques, as desired.
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c2(G ) and mr(G ,F2)

In general, c2(G ) and mr(G ,F2) are not always equal, but close.

Theorem (CB, Purcell, Rombach)

For any graph G, either

i c2(G ) = mr(G ,F2), or

ii c2(G ) = mr(G ,F2) + 1, in which case c2(G ) is odd.
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c2(G ) and mr(G ,F2)

Theorem (CB, Purcell, Rombach)

For any graph G, either

i c2(G ) = mr(G ,F2), or

ii c2(G ) = mr(G ,F2) + 1, in which case c2(G ) is odd.

Idea of proof.
Let A be a matrix of minimum rank which fits G over F2.

If rank(A) is odd, then A decomposes into XXT for some matrix
X ∈ Fn×k

2 , which may be taken as a clique-incidence matrix for G .1

1S. Friedland and R. Loewy. On the minimum rank of a graph over finite
fields. Linear algebra and its applications, 2012.
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c2(G ) and mr(G ,F2)

Theorem (CB, Purcell, Rombach)

For any graph G, either

i c2(G ) = mr(G ,F2), or

ii c2(G ) = mr(G ,F2) + 1, in which case c2(G ) is odd.

Idea of proof.
Let A be a matrix of minimum rank which fits G over F2.

If rank(A) is odd, then A decomposes into XXT for some matrix
X ∈ Fn×k

2 , which may be taken as a clique-incidence matrix for G .

If c2(G ) 6= mr(G ,F2), then A does not decompose in this way, so
rank(A) is even. Thus, mr(G + K2,F2) = mr(G ,F2) + 1 is odd, so
c2(G + K2) = mr(G ,F2) + 1 and c2(G ) ≤ mr(G ,F2) + 1.
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c2(G ) and mr(G ,F2)

Theorem (CB, Purcell, Rombach)

Let G be a graph. The following are equivalent.

i. c2(G ) = mr(G ,F2) + 1;

ii. there is a unique matrix A of minimum rank over F2 which
fits G, and every diagonal entry of A is 0;

iii. there is an optimal clique construction of G in which every
vertex appears an even number of times;

iv. for every component G ′ of G, c2(G ′) = mr(G ′,F2) + 1.
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Forbidden induced subgraphs

The property c2(G ) ≤ k is hereditary and finitely defined. For odd
k , the sets of minimal forbidden induced subgraphs for c2(G ) ≤ k
are the same as those for mr(G ,F2) ≤ k . For even k, this is not so.
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Minimal forbidden induced subgraphs

c2(G ) ≤ 2 mr(G ,F2) ≤ 2

P4

P3 + K2

3K2

full house

dart n

K3,3

W5

P3 ∨ P3
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Thank you!
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