CHEMISTRY 131, Inorganic Chemistry University of Vermont Spring Semester, 2014

Professor Christopher Landry

E-mail: christopher.landry@uvm.edu Phone: 802-656-0270 Office: Cook A134 Office hours: Tues 2:00 – 3:30pm Thurs 9:30 – 11:00am or by appointment

Background:

Inorganic chemistry deals with the properties of all of the elements in the periodic table, ranging from metals to nonmetals. The differences in physical properties and reactivities of the elements implies that inorganic chemistry bridges many areas of study, from materials science and spectroscopy to biochemistry. In this course, our primary interest will be to develop a basic understanding of bonding that can be applied to a variety of inorganic molecules. This will allow us to explore selected areas in more detail, such as solid state chemistry, organometallics and catalysis, and bioinorganic chemistry.

<u>Textbooks:</u>		
Miessler & Tarr, Inorganic Chemistry, Custom Edition for UVM	reserve	1269060767
Vincent, Molecular Symmetry and Group Theory, 2 nd Ed., 2001.	recommended	0471489395
Shriver & Atkins, Inorganic Chemistry, 4 th Ed., 2006.	reference	0716748789
Huheey, Keiter, & Keiter, Inorganic Chemistry: Principles of Structure and	reference	006042995X
Reactivity, 4 th Ed., 1997.		

<u>Organization:</u> 10 Quizzes, 100 pts. (22%) 2 Tests, 200 pts. (44%) Final Exam, 150 pts. (33%) 450 total points. <u>Test Schedule:</u> Test #1: Monday, Feb. 24, 7-9 pm, Angell B106 Test #2: Monday, Apr. 7, 7-9 pm, Angell B106 Final Exam: Monday, May 5, 10:30am, Angell B112

Quiz Schedule: (all Fridays): January 24, 31; February 7, 14, 21; March 14, 21, 28; April 4, 18, 25.

<u>No Class:</u>

Monday, January 20; Monday, February 17; Monday-Friday, March 3-7.

Quizzes will cover recent lecture material (i.e., from the previous week); 11 are given, and the lowest quiz score is dropped. They are normally given in class every Friday and take 10 to 15 minutes to complete. Occasionally they will be given as group activities, whether in-class or take-home. Quizzes are not given on the Friday after a test. **Tests** will cover new material (i.e. test 2 will cover material introduced after test 1, etc.). They will be given at 7 pm on the dates listed above. They typically will take between one and two hours. The **final exam** is semi-cumulative; it mainly covers new material, but will include a several questions on important material from previous topics.

The instructor reserves the right to change everything, with notice.

Class Schedule Chem 131, Spring 2014

Date	Cha	apter/section	Reading	Topics	Assessment
Week 1	M:	1.0	1 – 6	atomic reactivity, inorganic vs. organic chemistry	
1/13 – 1/17	W:	1.1 – 1.2	19 - 23	periodic table, wave-particle duality	
	F:	2.0 – 2.1	24 - 27	probability, electron wavefunction	no quiz
Week 2	M:	no class			
1/20 – 1/24	W:	2.2 - 2.3	27 - 39	quantum numbers, orbitals, nodes	
	F:	2.4	39 - 45	shielding, effective nuclear charge	Quiz #1
Week 3	M:	2.5	45 - 49	periodic properties	
1/27 – 1/31		3.1	55 – 56	Lewis diagrams	
	W:	3.1 - 3.2	56 - 63	drawing Lewis and VSEPR structures	
	F:	3.2	64 - 74	features influencing 3D molecular structure	Quiz #2
Week 4	M:	3.3 - 3.4	77 – 82	polarity, hydrogen bonding	
2/3 – 2/7		5.1	140 – 141	formation of molecular orbitals	
	W:	5.1	141 – 145	bonding, antibonding, nonbonding orbitals	
	F:	5.2	146 – 157	homonuclear diatomics, bond order	Quiz #3
Week 5	M:	5.3	95 – 106	VSEPR model, polarity	
2/10 - 2/14	W:			comparison of covalent bonding models	
	F:	4.1	87 – 93	molecular symmetry, symmetry elements	Quiz #4
Week 6	M:	no class			
2/17 - 2/21	W:	4.2	93 - 103	point groups	
	F:	4.4	114 – 115	point group practice, chirality, polarity	Quiz #5
Week 7	M:			test review	Test #1
2/24 - 2/28	W:	4.3	103 – 108	matrices, characters, representations	
	F:	4.3	108 – 114	character tables	no quiz
Week 8	M:	no class			
3/3 - 3/7	W:	no class		Spring Break	
	F:	no class			
Week 9	M:	handout		group theory: bonding in AH _n molecules	
3/10 - 3/14	W:	handout		group theory: bonding in AX _n molecules	
	F:	handout		MO diagram practice	Quiz #6

M:	7.1	233 - 239	coordination compounds, chelates, ligands	
W:	7.3	244 - 258	isomerism and chirality of metal complexes	
F:	8.3	286 - 289	ligand field theory	Quiz #7
M:	8.3	289 - 296	π donors/acceptors, strong/weak field	
W:	8.3	299 - 305	non-octahedral environments	
	8.5 - 8.6	315 - 320		
F:	handout		spectrochemical series, magnetism	Quiz #8
M:	9.0 - 9.3	331 - 344	intro organometallic chem, 18 electron rule	
W:	9.4	344 - 356	CO, NO, H ₂ bonding modes	
F:	9.5	359 - 367	π systems	Quiz #9
M:			test review	Test #2
W:			examples of catalytic organometallic processes	
F:	11.0 – 11.1	447 - 449	bioinorganic chemistry, amino acids, porphyrin	no quiz
M:	11.1	449 - 453	heme-containing metalloproteins	
W:	11.2 – 11.3	456 - 463	other Fe proteins, Zn and Cu proteins	
F:	11.4	463 - 464	Fe clusters, nitrogenase, "ox-phos" system	Quiz #10
M:	6.0 - 6.1	196 - 203	metallic bonding, unit cells, packing	
W:	6.1 – 6.2	203 - 212	binary ionic solids, structure types, energetics of ionic solids	
F:	6.3	212 - 219	electronic properties of metals, band structure, diodes	Quiz #11
M:	catch up			
W:	catch up			
F:	no class			
	M: W: F: M: W: F: M: W: F: M: W: F: M: W: F: M: W: F: F: M: W: F:	M:7.1W:7.3F: 8.3 M: 8.3 W: 8.3 N: $8.5 - 8.6$ F:handoutM: $9.0 - 9.3$ W: 9.4 F: 9.5 M:W: -11.1 M: $11.2 - 11.3$ F: 11.4 M: $6.0 - 6.1$ W: $6.1 - 6.2$ F: 6.3 M:catch upW:catch upF: no class	M:7.1 $233 - 239$ W:7.3 $244 - 258$ F: 8.3 $286 - 289$ M: 8.3 $299 - 305$ $8.5 - 8.6$ $315 - 320$ F:handoutM: $9.0 - 9.3$ $331 - 344$ W: 9.4 $344 - 356$ F: 9.5 $359 - 367$ M:W: $$ W:W:11.1 $447 - 449$ M: $11.2 - 11.3$ $456 - 463$ F: 11.4 $463 - 464$ M: $6.0 - 6.1$ $196 - 203$ W: $6.1 - 6.2$ $203 - 212$ F: 6.3 $212 - 219$ M:catch upF: no class	M:7.1233 - 239coordination compounds, chelates, ligandsW:7.3244 - 258isomerism and chirality of metal complexesF:8.3286 - 289ligand field theoryM:8.3289 - 296 π donors/acceptors, strong/weak fieldW:8.3299 - 305non-octahedral environments8.5 - 8.6315 - 320spectrochemical series, magnetismM:9.0 - 9.3331 - 344intro organometallic chem, 18 electron ruleW:9.4344 - 356CO, NO, H2 bonding modesF:9.5359 - 367 π systemsM:test reviewW:examples of catalytic organometallic processesF:11.0 - 11.1447 - 449bioinorganic chemistry, amino acids, porphyrinM:11.2 - 11.3456 - 463other Fe proteins, Zn and Cu proteinsF:11.4463 - 464Fe clusters, nitrogenase, "ox-phos" systemM:6.0 - 6.1196 - 203metallic bonding, unit cells, packingW:6.1 - 6.2203 - 212binary ionic solids, structure types, energetics of ionic solidsF:6.3212 - 219electronic properties of metals, band structure, diodesM:catch upF:no class

- Understand and explain periodic trends and unique reactivity patterns
- Recognize molecular symmetry

KEY SKILLS:

- Create qualitative molecular orbital diagrams for simple molecules and complexes
- Understand bonding and reactivity of transition metal complexes
- Describe the roles of metals in biological systems
- Rationalize bonding in solids