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a b s t r a c t

This paper numerically investigates the nonlinear dynamics of the unstable convection regime of the
thermal convection loop, an experimental analogue of the Lorenz model. The lower half of the toroidal
loop is heated and maintained at a constant high temperature, while the upper half is cooled at a constant
low temperature. Subject to the proper boundary conditions, the system of governing equations is solved
using a finite volume method. The numerical simulations are performed for water corresponding to
Pr = 5.83 and Rayleigh number varying from 1000 to 150,000. In the case of a loop heated from below
and cooled from above, it has been demonstrated theoretically and experimentally in the literature that
multiple flow regimes are possible. Numerical results in terms of streamlines, isotherms, and local heat
flux distributions along the walls are presented for each flow regime. Although several studies have
investigated the chaotic regime of convection loops, there have been no detailed numerical simulations
of the dynamics of flow reversals. Fine-scale flow behavior during the transition from one flow direction
to another is illustrated by the temporal evolution of temperature distribution, mass flow rate, and local
heat flux at selected locations in the system. Issues related to the observed Kelvin–Helmholtz instabilities
are discussed.

! 2009 Elsevier Ltd. All rights reserved.

1. Introduction

From fluid physics, when a gas or a single-phase liquid is placed
inside a stationary closed space, circulatory convective flow is sus-
tained when a temperature difference is applied at two or more ac-
tivewalls. The state-of-the art chapters written by Yang [1], Raithby
and Hollands [2], and Jaluria [3] disclosed an important subclass of
enclosure problems in several branches of engineering, geophysics,
environmental sciences, etc. The literature on natural convection in
conventional configurations of square and rectangular enclosures is
rich, as evidenced by the articles cited in [1–3]. However, less is
knownabout other configurationswhich are also useful in engineer-
ing applications; the thermal convection loop fits into this category.
The latter is of remarkable importance as it is widely used in solar
water heaters, nuclear reactors, gas turbine blade cooling, and other
applications [4,5]. Lorenz’s 3-D ordinary differential equationmodel
of convection in a Rayleigh–Bénard cell, a simplified model of this
system, has been studied extensively by atmospheric scientists
examining the nonlinear error growth observed in sophisticated
models of atmospheric convection [6,7].

Thermal convection loops are systems in which fluid motion is
induced by buoyancy forces when a temperature difference is ap-

plied at the walls. The fluid circulates in a closed pipe system,
heated from below and cooled from above, oriented in a vertical
plane. Depending on the density variations, which are directly pro-
portional to the temperature difference between the hot and cold
walls, multiple flow regimes are possible. These are pure conduc-
tion, steady convective flow that may rotate clockwise (CW) or
counter-clockwise (CCW), and Lorenz-like chaotic flow [8]. The
most representative studies dealing with this subject are cited
chronologically in the following paragraphs. Earlier convection
studies used one-dimensional models to mimic the fluid flow
and heat transfer in a differentially heated fluid loop assuming that
all governing parameters are uniform over a cross section of the
system [9,10]. Periodic oscillations were found analytically by
Keller [9] in a 1-D model consisting of a fluid-filled tube bent into
a rectangular shape and standing in a vertical plane. In a theoreti-
cal discussion, Welander [10] found that 1-D systems have one
steady solution with warm fluid rising in one branch and cold fluid
sinking in the other. This solution may, however, become unstable
in an oscillatory manner. A weak instability takes the form of pul-
sations, while a strong instability takes the form of oscillations
with zero mean motion.

A stability study of natural convection was conducted experi-
mentally by Creveling et al. [11] in a glass thermal convection loop
filled with water and oriented in a vertical plane. At low and high
heat transfer rates the flow was observed to be steady. For an
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intermediate range, however, the flow was found to be highly
oscillatory. Their experimental observations agreed with the theo-
retical analyses by Keller [9] and Welander [10]. Gorman et al. [12]
presented a quantitative comparison of the flow in a thermal con-
vection loop with the nonlinear dynamics of the Lorenz model.
Their model was heated at constant heat flux over the bottom half
and cooled at a constant temperature over the top half. The bound-
aries of different flow regimes were determined experimentally
and the characteristics of chaotic flow regimes were discussed.
They also derive a relationship between the parameters of the Lor-
enz model and the experimental parameters of the fluid and loop.

In a theoretical and experimental investigation, Yuen and Bau
[13] used optimal control theory to construct a controller to sup-
press chaotic flow regimes in a thermal convection loop. This tech-
nique is often used in many industrial processes to maintain
desirable flow conditions. The authors demonstrated, in both
experiments and theory, that the nature of the flow in a thermal
convection loop heated from below and cooled from above can
be significantly modified and that chaos can be controlled. On a re-
lated topic, Tang and Bau [14–18] studied analytically and experi-
mentally the stabilization of the flow in Rayleigh–Bénard
convection using feedback controllers. With the aid of a controller,
they showed that the transition from no-motion to steady convec-
tion can be significantly postponed.

The stability of single-phase loops has been the subject of inves-
tigation by Vijayan and Austregesilo [19]. Scaling laws were devel-
oped and successfully verified against experimental data using
various loops. The stability behavior of uniform diameter loops
can be expressed in terms of non-loop dimensionless groups of
parameters. These correlations have recently been extended to
loops with non-uniform diameters by Vijayan [20]. Jiang et al.
[21] studied the effects of boundary conditions on flow stability
in a thermal convection loop. The experiment was performed on
a copper torus and the observations were in contrast with those re-
ported on a glass torus. The Lorenz-like chaotic flow was not ob-
served and the authors attributed this to the fact that the high
thermal conductivity of the walls deforms the heat flux distribu-
tion and hence affects the global flow stability. Jiang and Shoji
[22] also focused their study on the influence of thermal boundary
conditions on the spatial and temporal stabilities of the flow. Mul-
ti-scale analysis was applied to study the flow fluctuation and self-
organization in a thermal convection loop. In the analysis, a coeffi-

cient was proposed to measure the differences in thermal bound-
ary condition. Depending on the value of this coefficient, spatial
and/or temporal instabilities may occur leading to Lorenz-like or
intermittent chaos.

Lavine et al. [23,24] reported the outcomeof a numerical study of
natural convection assuming steady-state conditions and flow sym-
metryabout thevertical plane. The studywasundertaken in twodis-
tinct parts. In the first part [23], the Grashof number was fixed at
1900 and the effect of a tilted angle varying between 0" and 90"
was investigated. Itwas shownthat theflow is strongly threedimen-
sional and the friction factor is higher than for fully developed lam-
inar flow in a straight pipe. Regions of streamwise flow reversals
were predicted for low tilt angle causing the total buoyancy to de-
crease. In the secondpart [24], resultswere presented for twodiffer-
ent Grashof numbers exhibiting flow regimes, which have been
experimentally observed at higher Grashof numbers such as flow
reversals and secondary motions. The strength of these flows is
greater for the higher Grashof number and the total buoyancy de-
creases with increasing Grashof number. Burroughs et al. [25]
numerically analyzed the flow in the loop at low Grashof number
for awide range of Prandtl number using a Fourier–Chebyshev spec-
tral method. The numerical results were found to converge toward
the asymptotic results of coupled nonlinear PDEs developed by the
authors to describe the flow in the loop.

Despite the wealth of literature for this problem, there is little
information on the spatiotemporal details of the flow and only
three studies have been identified. Ambrosini et al. [26] focused
on 1-D stability analysis of single-phase circulation in a rectangular
loop at the transition from laminar to turbulent. They found that
the choice of a friction law has an important effect on the numer-
ical predictions. Recently, Pilkhwal et al. [27] used CFD code to
model 1-D and 3-D circulation in a rectangular loop made of glass
under different heating/cooling configurations. The 3-D model
showed the origin of pulsating instabilities observed in the exper-
iments when the loop is heated from below and cooled from the
top. Desrayaud et al. [8] recently investigated numerically the un-
steady laminar natural convection in a 2-D loop maintained at a
constant heat flux over the bottom half and cooled at a constant
temperature over the top half. Their results were presented for a
relatively wide loop with radius ratio R = 3. In contrast, the objec-
tive of this paper is to perform direct unsteady numerical simula-
tions of laminar natural convection in a loop with the torus radius

Nomenclature

cp specific isobaric heat capacity, J/kg K
g acceleration of gravity, m/s2

h local convective heat transfer coefficient, W/m2 K
k thermal conductivity, W/m K
L* gap width, ½¼ r#o $ r#i %, m
_m dimensionless mass flow rate, ½¼ _m#=qmL#Gr ¼ _m#Pr=

qmL#Ra%
Nu local Nusselt number [=hL*/k]
Nu mean Nusselt number
p dimensionless static pressure
Pr Prandtl number, [=m/a]
r# torus radius, ½¼ ðr#o þ r#i Þ=2%, m
r#i inner radius, m
r#o outer radius, m
R radius ratio, ½¼ ðr#o þ r#i Þ=L

#%
Ra Rayleigh number, ½¼ gbðT#

H $ T#
CÞL

#3=ma%
t dimensionless time, [=at*/L*2]
T dimensionless temperature
T#
0 reference temperature, ½¼ ðT#

H þ T#
CÞ=2%, K

u, v dimensionless velocities in the x- and y-directions
V dimensionless velocity magnitude

Greek letters
a thermal diffusivity, [=k/qcp], m2/s
b coefficient of volumetric thermal expansion, 1/K
l viscosity, kg/m s
m kinematic viscosity, [=l/q], m2/s
q density, kg/m3

w dimensionless stream function, [u = ow/oy, v = $ow/ox]

Subscripts
C cold wall
H hot wall
max maximum value

Superscript
# dimensional variables
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much larger than the pipe radius (R = 24, see Fig. 1). Details of the
flow behavior accompanying the transitions taking place as the
flow reverses direction during the chaotic regime were revealed
for the first time by presenting the temporal evolution of the flow
structure during these transitions, and by providing the time his-
tory of the mass flow rate and local heat flux at selected locations
in the system. The simulations are now described in greater detail.

2. Model of the physical system and numerical methods

The physical system consists of a circular loop filled with water
and oriented in a vertical plane as shown in Fig. 1. The dimensions
of the loop are 69 cm inner diameter and 75 cm outer diameter,
giving a radius ratio R of 24. Initially, the water is in thermal equi-
librium at T#

0 ¼ 300 K. At a preset time, the lower (h = p to 2p) wall
is heated and maintained at a high temperature T#

H ¼ 310 K while
the upper (h = 0 to p) wall is cooled and maintained at a low tem-
perature T#

C ¼ 290 K. Temperature discontinuities between the hot
and cold walls at h = 0 and pwere avoided by a smooth linear tran-
sition from T#

H to T#
C over a small distance e = 0.8 cm around h = p

and h = 2p. In all numerical results presented, a constant tempera-
ture differential ðT#

H $ T#
CÞ of 20 K is imposed between the hot and

cold walls, changes to the Rayleigh number were made by adjust-
ing gravity. For this modest temperature differential we regard the
variations of all material properties with temperature to be negli-
gible. Correspondingly, the standard Boussinesq approximation is
adopted and all fluid properties are assumed to be constant and
evaluated at the reference temperature T#

0. To justify this assump-
tion, steady-state cases with temperature-dependant fluid proper-
ties were conducted and very small deviations of less than 0.4%
were observed in the mass flow rate and the mean wall heat flux.
The fluid flow is assumed to be laminar, two dimensional, and the
viscous dissipation is neglected due to low velocities. Under these
circumstances, the governing dimensionless equations are the un-
steady, 2-D laminar Navier–Stokes equations along with the en-
ergy equation:

@u
@x

þ @v
@y

¼ 0 ð1Þ

@u
@t

þ u
@u
@x

þ v @u
@y

¼ $ @p
@x

þ Pr
@2u
@2x

þ @2u
@2y

 !
ð2Þ

@v
@t

þ u
@v
@x

þ v @v
@y

¼ $ @p
@y

þ Pr
@2v
@2x

þ @2v
@2y

 !
þ RaPr T ð3Þ

@T
@t

þ u
@T
@x

þ v @T
@y

¼ @2T
@2x

þ @2T
@2y

 !

ð4Þ

The dimensionless variables in the above equations are defined as

t ¼ t#a
L#2

; x ¼ x#

L#
; y ¼ y#

L#
; u ¼ u#L#

a ; v ¼ v#L#

a ;

p ¼ p#L#2

qa2 ; T ¼ ðT# $ T#
CÞ

ðT#
H $ T#

CÞ
: ð5Þ

In the above equations, q, T, and a represent the density, dimen-
sionless temperature, and thermal diffusivity. The superscript # in
Eq. (5) indicate the dimensional variables. The velocity field is sub-
ject to no-slip boundary conditions. Prescribed constant tempera-
ture boundary conditions of T#

H and T#
C are imposed at the heated

bottom and cooled upper walls, respectively. The laminar nature
of the flow has been verified at the highest Rayleigh number of
150,000 which produces chaotic oscillations with flow reversals.
The maximum Reynolds number calculated using the largest ob-
served value of the mass flow rate was Remax = 210.5.

The computational domain is constructed to be coincident with
the physical domain forming the circular loop with no symmetry
assumptions. The governing Eqs. (1)–(4), subject to the boundary
and initial conditions, are solved using the finite volume method.
An implicit segregated solver is used and all discretization schemes
employed are of second-order accuracy or higher. The QUICK
scheme is used for the momentum, energy and density discretiza-
tion. A second-order body-force-weighted scheme is used in the
pressure discretization and the SIMPLE scheme is used in the pres-
sure–velocity coupling. Convergence of a simulation at each time
step was assessed through the monitoring of computed residuals
(velocity, energy, and mass conservation) and also through the
convergence of point and/or surface monitors for velocity, temper-
ature and heat flux at selected locations in the domain by setting
their absolute convergence criterion to 10$6. The numerical simu-
lations are performed for water corresponding to Pr = 5.83, and
Rayleigh number varying from 1000 up to 150,000, using the com-
mercial software FLUENT 6.3 [28].

A grid independence study was conducted in the steady-state
convection regime at Ra = 8 ) 104. Based on a sequence of numer-
ical experiments using various grid sizes ranging from 7500 up to
78,000 quadrilateral elements, it was found that a uniform mesh
constructed with 16,890 finite volume quadrilateral elements pro-
vided a good compromise between the computational efforts and
accuracy. Table 1 illustrates the effect of the grid size on the solu-
tion. Grid independence was achieved within one percent of the
maximum velocity magnitude, the mass flow rate, as well as the
mean Nusselt number at both the hot and cold walls. A section

ro = 37.5 cm 

TH

x

y 

TH

TC

• Point-1 

g 

TC

ri = 34.5  cm 

θ

Fig. 1. Schematic of the thermal convection loop (not drawn to scale). The
dimensions of the loop are 34.5 cm inner radius and 37.5 cm outer radius, giving
a radius ratio R of 24. The exterior of the lower half is heated and maintained at
a constant high temperature TH, while the exterior of the upper half is cooled at a
constant low temperature TC.

Table 1
Effect of grid size on the steady-state solution at Ra = 80,000. Based on a sequence of
numerical experiments, the optimal computational mesh is constructed with 16,890
finite volume quadrilateral elements (see Fig. 2). Grid independence was achieved
within one percent of the maximum velocity magnitude, the mass flow rate as well as
the heat transfer rate at the walls.

Mesh Vmax NuH NuC _m

7500 747.74 2.127 $2.127 0.1540
16,890 747.74 2.105 $2.105 0.1554
30,000 749.77 2.103 $2.103 0.1556
78,000 751.81 2.105 $2.105 0.1562
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of the computational grid employed and composed entirely of
orthogonal elements is shown in Fig. 2.

Validation of the computer code used to predict the velocity and
temperature fields was performed in a differentially heated wide
loop of radius ratio R = 1.75 in order to compare with published
data. The computed mean Nusselt number is compared against
the results published in Kuehn and Goldstein [29] and Desrayaud
et al. [8] using air as the working fluid in Table 2. Good agreement
was observed in the range of the Rayleigh number under consider-
ation, with the maximum difference being less than one percent.

3. Results and discussion

In the case of a loop heated from below and cooled from above,
it has been demonstrated theoretically and experimentally
[8,10,11,21] that multiple flow regimes are possible in the range
of Rayleigh number considered in the present work. These are pure
conduction, steady convective flow that may rotate CW or CCW by
chance, and Lorenz-like chaotic flow. Numerical results in terms of

streamlines, isotherms, and local heat flux along the walls are pre-
sented for each flow regime. A special effort is devoted to illustrate
how the flow reversals occur during the Lorenz-like chaotic re-
gime. This is done by presenting the temporal evolution of the flow
structure during the transition from one flow direction to another,
and by providing the time history of the mass flow rate and local
heat flux at selected locations in the system. Also, issues related
to the observed Kelvin–Helmholtz instabilities are discussed.

3.1. Conduction regime

The first solution obtained for a small forcing (Ra = 1000) is
illustrated in Fig. 3. This solution has been generated by maintain-
ing the walls along the lower half of the system at a high temper-
ature T#

H and the walls along the upper half at a low temperature
T#
C , while the fluid was initially in thermal equilibrium at

T#
0 ¼ ðT#

H þ T#
CÞ=2. At this value of Ra, the system is initialized

slightly above the critical Ra value corresponding to the onset of
thermal convection. The fluid motion is very slow and consists of
eight counter rotating cells. The small circulations are limited to
the regions where the temperature discontinuity occurs. Four
counter rotating cells exist at the left discontinuity and four at
the right discontinuity. The remaining fluid along the loop is
motionless and it is observable that this solution is symmetric with
respect to the center of the loop. The temperature field is charac-
terized by a dominant conductive mode and consequently the fluid
is hot in the lower half and cold in the upper half with small re-
gions exhibiting temperature gradients near the discontinuities.
The convective motion is oriented upward for the two upper cells
and downward for the lower cells.

Fig. 2. Portion of the computational grid showing the distribution of elements within the loop. Based on a sequence of numerical experiments, the optimal computational
mesh is constructed with 16,890 finite volume quadrilateral elements. Grid independence was achieved within one percent of the maximum velocity magnitude as well as
the mean wall heat flux at the walls.

Table 2
Comparison of the mean Nusselt number in a differentially heated loop against the
results of Kuehn and Goldstein [29] and Desrayaud et al. [8]: radius ratio R = 1.75 and
Pr = 0.7 (air).

Ra Kuehn and Goldstein [29] Desrayaud et al. [8] Present work

103 1.081 1.109 1.093
104 2.010 2.004 2.020
5 ) 104 3.024 3.031 3.041

ψ T 

(a) (b) 

9.9×10-3

8.9 

7.8 

6.8 

5.7 

4.7 
3.6 

2.5 

1.5 

4.9×10-4

(a) (b)
Fig. 3. Streamlines (left) and isotherms (right) during the pure conduction regime at Ra = 1000: (a) left side of the loop near h = p and (b) right side of the loop near h = 0. The
fluid motion is very slow and consists of eight counter rotating cells. The small circulations are limited to the regions where the temperature discontinuity occurs. Four
counter rotating cells exit at the left discontinuity and four at the right discontinuity. The remaining fluid along the loop is motionless and symmetric with respect to the
center of the loop. The temperature field is characterized by a dominant conductive mode and consequently the fluid is hot in the lower half and cold in the upper half with
small regions exhibiting temperature gradients near the discontinuities.
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The heat transfer results (not presented here) for this forcing
are typical of a dominant conduction regime. In fact, the local Nus-
selt number, Nu, along the walls begins with a relatively large va-
lue at the points where the discontinuities occur. Nu exhibits a
positive concave U-shape with zero values as we move away from
the discontinuities.

3.2. Steady convection

When increasing Ra above 1000, no visible qualitative changes
were observed in the cell shapes. Quantitatively however, the
intensity of the flow increases, improving the overall heat transfer
through the walls of the loop. The buoyant cellular flow is steady
for a wide range of Ra, but as Ra was gradually increased the cellu-
lar patterns disappeared, and a fluid circulation along the loop ap-
pears and remains steady. The features of this new steady-state are
depicted in Fig. 4 in terms of streamlines (left) and isotherms
(right) at Ra = 25,000. Figs. 4a and b show the development of
the thermal boundary layer along the walls as the hot/cold stream
first encounters the cold/hot walls, respectively. Due to the sym-
metry of the physical system and boundary conditions, the image
of this solution through a vertical plane mirror is also a solution.
Both solutions transfer the same amount of heat through the loop,
but rotate in opposite directions.

Illustrated in Fig. 5 is the variation of the local Nusselt number,
Nu, along the outer hot wall from left (h = p) to right (h = 2p) for
different values of the Rayleigh number. The fluid motion is steady
and rotates CW for the three values of Ra considered. The lower Nu
curve representative of Ra = 10,000 presents a monotonic increase
with respect to the dimensionless distance along the wall begin-
ning with a low value at h = p and ending with a high value at
h = 2p. The large Nu values in the vicinity of h = 2p can be attrib-
uted to vigorous convective heat transfer as the cold fluid descend-
ing from the upper region of the system first encounters the hot
wall. When Ra is increased to 25,000, the Nu curve moves up
slightly but remains almost parallel for more than three quarters
of the distance along the wall. However, the separation between
both curves shrinks and the two curves eventually coincide
approaching the discontinuity at h = 2p. A different behavior is
encountered at high Ra of 80,000. The Nusselt curve is also shifted
up with respect to the Nu-curve related to Ra = 25,000, but as we
approach h = 2p, Nu develops wave-like patterns before increasing
to its high value at the end of the wall.

It is well known that in Rayleigh–Bénard problems, natural con-
vection becomes oscillatory when the Rayleigh number exceeds a
certain critical value. Above this critical value, the steady-state
convective motion becomes oscillatory even if the initial condi-
tions are those of a steady-state solution, i.e. steady convection is
an unstable solution. Fig. 6 presents the temporal evolution of
the mass flow rate at Ra = 110,000. To ensure that the nature of
the oscillations is sustained, the time integration was continued
up to t = 32.7. The fluid is flowing in the CW direction, as the values
of the mass flow rate, _m, are always positive. A close look at Fig. 6
shows cycles of constant time period where the fluid speeds up and
slows down with seemingly random but bounded amplitude. A
further increase in the Rayleigh number has no effect on the nature
of the oscillations until the flow patterns reach a new state charac-
terized by oscillations with increasing amplitude, followed by flow
reversals. This new state, referred to as the Lorenz-like chaotic re-
gime, is discussed in the following section.

ψ
T 

(a) 
(b) 

0.279 

0.249 

0.220 

0.191 

0.161 

0.131 

0.102 

0.073 

0.043 

0.014 

(a) (b)
Fig. 4. Structure of the steady-state solution showing streamlines (left) and isotherms (right) at Ra = 25,000: (a) hot fluid flowing through the cold region of the system and
(b) cold fluid flowing through the hot region of the system. Fig. 4a and b shows the development of the thermal boundary layer along the walls as the hot/cold stream first
encounters the cold/hot walls, respectively. Due to the symmetry of the physical system and boundary conditions, the image of this solution through a vertical plane mirror is
also a solution. Both solutions transfer the same amount of heat through the loop, but rotate in opposite directions.

0.2

0.7

1.2

1.7

2.2

2.7

3.2

3.7

0 0.2 0.4 0.6 0.8 1

Dimensionless distance along the wall

N
u

Ra = 80000 

Ra = 25000 

Ra = 10000 

10

0.5

Fig. 5. Local Nusselt number along the outer hot wall from left (h = p) to right
(h = 2p) at different values of the Rayleigh number. The flow is under steady-state
convection for the three values of Ra considered. The heat Nusselt curves represent
a nearly monotonic increase with respect to the dimensionless distance along the
wall beginning with a low value at h = p and ending with a high value at h = 2p. The
large Nu values in the vicinity of h = 2p can be attributed to vigorous convective
heat transfer as the cold fluid descending from the upper region of the system first
encounters the hot wall. A different behavior is encountered at high Ra of 80,000.
The Nusselt curve is shifted up with respect to the Nu-curve related to Ra = 25,000,
but as we approach h = 2p, Nu develops wave-like patterns before increasing to its
high value at the end of the wall.
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3.3. Lorenz-like chaotic flow

The temporal evolution of the mass flow rate at Ra = 150,000 is
illustrated in Fig. 7, which depicts a typical variation of the x vari-
able in the original three-variable Lorenz model. The flow under-
goes a change in direction each time the mass flow rate _m
changes sign. Positive values of _m correspond to CW rotation, while
negative values indicate CCW rotation. The flow rate oscillates
with increasing magnitude until it reaches a critical amplitude
(as measured from the unstable steady convective solution which
appears to be near ±0.21) leading the flow to change direction.
Upon a change in direction, a new cycle begins with a new series
of oscillations. It is important to point out that if the magnitude
of the first peak in a given direction is large enough, the flow re-
verses direction quickly without further increases in oscillation
amplitude.

Creveling et al. [11] proposed the following positive feedback
mechanism to explain these flow reversals. Assume the fluid is in
an equilibrium state of CCW flow and that an anomalous warm
pocket of fluid arrives at h = 0. The hot pocket exerts a buoyant

force on the fluid, causing a positive acceleration in the CCW direc-
tion and speeding up the rotation. This pocket cools less on its jour-
ney across the top half of the tube, arriving at h = $p hotter than it
was in its prior trip through the discontinuity. Consequently, there
is a buoyant force in the reverse (CW) direction acting to slow
down the speed of rotation. The fluid decelerates, but continues
in the CCW direction, allowing the anomalous pocket more time
to heat up. Upon arriving again at h = 0, the pocket is once again
hotter than it was previously, by a greater amount now than be-
fore. The buoyant force acting to accelerate the flow is greater this
time, since the instability has been magnified. With even less time
to cool off as the pocket crosses the top half of the tube, the insta-
bility continues to grow, decelerating the clockwise flow again at
h = $p, etc. Amplification continues until the buoyant force gener-
ated by the pocket at h = $p grows large enough, causing the flow
to stop. With no rotation in the tube, the temperature gradient
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Fig. 6. Temporal evolution of the mass flow rate at Ra = 110,000. The fluid is flowing
with seemingly random flux deviations around the loop in the CW direction
ð _m P 0Þ. The figure shows cycles of constant time period where the fluid speeds up
and slows down with chaotic bounded amplitude.
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Fig. 7. Temporal evolution of the mass flow rate at Ra = 150,000. The fluid
undergoes a flow reversal each time the mass flow rate _m changes sign. Positive
values of _m indicate CW fluid rotation, while negative values indicate CCW rotation.
The flow rate oscillates with increasing magnitude until it reaches a critical
amplitude leading the flow to change direction. Upon a change in direction, a new
cycle begins with a new series of oscillations. If the magnitude of the first peak is
large enough, the flow reverses direction quickly without further oscillations.

Fig. 8. Temporal evolution of the flow structure during the transition from CW to
CCW fluid rotation at Ra = 150,000. Isotherms are plotted at selected times
corresponding to instants a–f in Fig. 7. These instants are marked with red dots
on the second negative peak in Fig. 7. Slight flow deformations are observed in the
vicinity of the temperature discontinuity (a), which take the form of two small
circulations. These cells propagate CW along the wall and new cells with higher
intensity are created at the discontinuity (b). This Kelvin–Helmholtz like instability
intensifies with time as the fluid velocity drops significantly (c). As the system
reaches a motionless state with a zero flow rate, a hot stream rises and pushes the
cold fluid towards the upper region of the system (e) leading to a new unsteady-
state characterized by CCW flow (f).

Fig. 9. Temporal evolution of the flow structure during the transition from CCW to
CW fluid rotation at Ra = 150,000. Isotherms are plotted at selected instants g–l
markedwith green dots on Fig. 7. The image at the instant g shows a fastmoving CCW
flow with no signs of transition. About 40 s later (Dt = 0.007), two hot streams are
diverted from thewalls in the regionwhere the temperature discontinuity occurs (h).
This deformation propagates CW along the hot wall with longer wavelength and
shorter amplitude structures when compared to the transition illustrated in Fig. 8.
The secondary flow cells arewashed off gradually by themain stream and eventually
disappear completely in favor of a new fast moving CW flow (l).
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between the top and bottom portions of the fluid grows undis-
turbed. The fluid will then ‘choose’ a direction of rotation and re-
peat the behavior indefinitely. Of course, when differential
heating is below the critical value, these thermal anomalies decay
in time.

Flow behavior during the transition from CW to CCW is
presented in Fig. 8. Isotherms are plotted at selected times
corresponding to instants a–f in Fig. 7. These instants are marked
with red dots on the second negative peak in Fig. 7 and more pre-
cisely during the decrease of _m from a maximum value towards its
minimum. At a time t = 26.602, Fig. 8a reveals that the flow is still
rotating CW with a relatively high velocity. Slight flow deforma-
tions are observed in the vicinity of the temperature discontinuity,
which take the form of two small circulations. These cells propa-
gate CW along the wall and new cells with higher intensity are cre-
ated at the discontinuity (Fig. 8b). These patterns resemble the
Kelvin–Helmholtz instabilities observed when a velocity shear is
present within a continuous fluid, or at the interface of two fluids
of different densities and velocities [30]. These structures intensify
with time once the fluid velocity has dropped significantly indicat-
ing the onset of a flow reversal (Fig. 8c). As the system reaches a
motionless state with a zero flow rate, a hot stream rises and
pushes the cold fluid towards the upper region of the system
(Fig. 8e). The thermal anomalies propagate CW and grow in magni-
tude until the flow pattern reaches a new unsteady-state charac-
terized by CCW flow as depicted in Fig. 8f.
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Fig. 10. Local Nusselt number along the outer hot wall from left (h = p) to right
(h = 2p) at Ra = 150,000. Each curve illustrates the distribution of the Nusselt
number at a typical instant t during the flow reversal from CW to CCW fluid rotation
at early stages of the process. The Nu curve at t = 26.585 presents the highest heat
flux through the wall with a relatively smooth curve compared to the subsequent
instants during the process. This is attributed to high fluid velocities at this instant.
The signs of a transition were first observed at t = 26.602, which are manifested in
the appearance of small waves at the vicinity of the temperature discontinuities.
These waves propagate along the wall and their number and magnitude are directly
proportional to the number of secondary cells in contact with the wall.
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Fig. 11. Local Nusselt number along the outer hot wall from left (h = p) to right (h = 2p) at Ra = 150,000. Each curve illustrates the distribution of the Nusselt number at an
intermediate typical instant t during the flow reversal from CW to CCW fluid rotation: (a) along the entire wall and (b–d) zoom-in images over different segments of the wall.
This figure is a continuation of Fig. 10 showing how the subsequent events during the transition affect the Nusselt distribution at the wall. A very complex distribution
characterized by long waves is observed. These waves propagate in an organized fashion from left to right (CCW).
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The temporal evolution of the flow structure during another
transition is presented in Fig. 9 to complete the visualization of
the flow behavior during a full flow cycle. This transition, which
takes place as the flow reverses from CCW to CW, also corresponds
to the second negative peak in Fig. 7. Isotherms are plotted at se-
lected instants g–l, marked with green dots (Fig. 7), when the flow
rate increases crossing the zero value heading towards a maxi-
mum. The isotherms in Fig. 9g show a fast moving CCW flow,
which occurs roughly 300 s (Dt = 0.05), after the last image in
Fig. 8. Two hot streams are diverted from the walls in the region
where the temperature discontinuity occurs as t increases to the
instant h (Fig. 9h). With help from the cold stream descending
from the upper region of the loop, this deformation propagates
along the hot wall in relatively small structures when compared
to the transition illustrated in Fig. 8. The flow reversal during this
transition occurs about four times faster than the first flow reversal
of Fig. 8. The secondary flow cells are washed off gradually with
time by the main stream and eventually disappear completely in
favor of a new fast moving CW unsteady-state.

The local Nusselt number, Nu, along the outer hot wall from left
(h = p) to right (h = 2p) is shown in Fig. 10 at Ra = 150,000. Each
curve illustrates the distribution of Nu at a typical instant t during
the early times of the flow reversal from CW to CCW flow. When
examining Fig. 10 we see that the instant t = 26.585 presents the
highest heat flux through the wall with a relatively smooth curve
compared to the subsequent instants during the process. This is
attributed to high fluid velocities at this instant, which occurs near
100 s (Dt = 0.0163) before the beginning of the transition leading
to a flow reversal. A similar trend was reported in Fig. 5 during
steady-state convection at Ra = 80,000. The signs of a transition
were first observed at t = 26.602, manifested in the appearance of
small waves at the vicinity of the temperature discontinuities.
These waves propagate along the wall and their number and mag-
nitude are directly proportional to the number of secondary cells in
contact with the wall. Further increments in time show that the
values of Nu shift down as a result of decreasing fluid velocities.

This behavior intensifies with time while moving towards a
motionless state just before the flow reverses direction. The sec-
ondary cells multiply in number and magnitude, and as a direct
consequence the distribution of the heat flux along the wall be-
comes more complex. This situation is depicted in Fig. 11 at typical
times during the flow reversal. This figure is a continuation of
Fig. 10 showing how the subsequent events during the transition
affect the heat flux distribution at the wall. For a better visualiza-
tion, Figs. 11b–d illustrate zoom-in images over different segments
of the wall. Regarding the instant t = 26.618, Nu presents a similar
trend as in the last instant t = 26.616 of Fig. 10. This is due to the
short time period between these two events. The behavior 72 s
(Dt = 0.0118) later was accompanied by a very complex distribu-
tion characterized by long waves in the central region of the wall
and also near the discontinuities at both ends of the wall. These
waves propagate in an organized fashion from left to right (CCW)
and seem to predict the next direction of the flow after the
transition.

Until now, the results discussed during the chaotic regime, and
more precisely during the transitions leading to flow reversals,
were provided as a sequence of discrete events during the process.
To have a better understanding of the flow behavior during the
chaotic regime, a continuous sequence of events in time is re-
quired. This is presented in terms of the time history of the local
Nusselt number, Nu, at point-1, which is located on the hot wall
around h = $p/6 (see Fig. 1). The selection of point-1 is based on
the interesting events occurring in this particular location as wit-
nessed in Figs. 8 and 11. Fig. 12a shows the temporal evolution
of Nu at point-1 along with the mass flow rate, _m, at
Ra = 150,000 during flow cycles when the fluid spends more time

oscillating CW. Likewise, Fig. 12b depicts the evolution of the same
variables during flow cycles when the fluid spends more time oscil-
lating CCW. Despite the random nature of Nu variations, it is
clearly observed from the figures that the Nu curve lies almost al-
ways above _m curve. We suspect this is because when _m increases,
the fluid velocities intensify and result in a larger heat flux at the
wall. Other interesting information that may be extracted from
Fig. 12 is related to the organized Nu oscillations happening each
time the flow undergoes a change in direction from CW ð _m P 0Þ
to CCW ð _m 6 0Þ. The higher the magnitude of these oscillations
the larger the negative peak of _m becomes.

In summary, Fig. 13 shows the bifurcation diagram illustrating
the transitions of the flow with Rayleigh number. Five different
flow regimes were encountered in the thermal convection loop
as Ra increases. The maximum error DRa associated with each
transition is also provided. The flow regimes encountered in this
study are consistent with the theoretical studies and experimental
observations available in the literature [8–12,20]. The instabilities
leading the flow to change direction are real and have been ob-
served in the laboratory by several groups. In fact, as the Rayleigh
number increases well beyond the transition from stable to unsta-
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Fig. 12. Time history of the local Nusselt number at point-1 along with the mass
flow rate at Ra = 150,000: (a) flow cycles when the fluid spends more time
oscillating CW and (b) flow cycles when the fluid spends more time oscillating
CCW. Despite the random nature of Nu variations, it is clearly observed from the
figures that the Nu curve lies almost always above _m curve. We suspect this is
because when _m increases, the fluid velocities intensify and result in a larger heat
flux at the wall. Organized Nu oscillations are observed each time the flow
undergoes a change in direction from CW ð _m P 0Þ to CCW ð _m 6 0Þ. The higher the
magnitude of these oscillations the larger the negative peak of _m becomes.
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ble convection, the chaotic regime characterized by flow reversals
disappears and the flow rotates in one direction with small oscilla-
tions indefinitely, i.e. convection becomes stable again for a large
enough Rayleigh number.

4. Conclusions

Transient numerical simulations were performed in a water-
filled thermal convection loop heated from below and cooled from
above. The results are presented in terms of streamlines, iso-
therms, and local heat flux along the walls for different flow re-
gimes encountered as the Rayleigh number increased from 1000
to 150,000. Detailed numerical simulations of the transitions tak-
ing place as the flow reversed direction during the chaotic regime
were revealed for the first time by presenting the temporal evolu-
tion of the flow structure during these transitions, and by provid-
ing the temporal evolution of the mass flow rate and local heat
flux at selected locations in the system.

The flow visualization over time showed that each transition
begins with slight flow deformations observed in the vicinity of
the temperature discontinuity. As the fluid neared a motionless
state, a rising hot stream pushed the cold fluid against the old
direction of rotation, leading to an unsteady-state with a new flow
direction opposite to the previous one. The reversal onset was
characterized by deformations taking the form of small circula-
tions propagating along the wall away from the discontinuity
and against the new direction of rotation, while new cells with
higher intensity are created at the discontinuity. This behavior,
which resembles the well-known Kelvin–Helmholtz instability,
intensifies with time after the fluid velocities had dropped signifi-
cantly. The time history of the heat flux distribution along the
walls during flow reversals depicted a very complex distribution,
characterized by long waves, in the central region of the walls
and also near the discontinuities at both ends of the walls. These
waves propagated in an organized fashion and seemed to predict
the direction of the flow after the transition.
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Fig. 13. Bifurcation diagram illustrating different flow regimes encountered in the loop and their existing ranges on the Ra axis. DRa is the maximum error associated with
each transition.
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