
CS 124 / Department of Computer Science

Operator Overloading

1



Motivation
We create objects and would like certain operators to "understand" how to work 
with these objects.


For example, in our introduction to C++ we overloaded two operators to work 
with our lecturer class:


• Stream insertion operator, << 

• Less than operator, <


Why can't we use these without overriding?

2



Motivation
#include <iostream> 
 
class Foo { 
private: 
    int data; 
public: 
    Foo(int data) { 
        this->data = data; 
    } 
}; 
 
int main() { 
    Foo f1 = Foo(42); 
    Foo f2 = Foo(77); 
    assert (f1 < f2); 
    return 0; 
} 

3

There seems to be a natural 
ordering of Foo objects 
based on the numeric values 
of their data fields




Motivation
#include <iostream> 
 
class Foo { 
private: 
    int data; 
public: 
    Foo(int data) { 
        this->data = data; 
    } 
}; 
 
int main() { 
    Foo f1 = Foo(42); 
    Foo f2 = Foo(77); 
    assert (f1 < f2); 
    return 0; 
} 

4

So it would make sense if we 
could compare Foos in this way. 
Is f1 > f2? Is f1 < f2? Does 
f1 == f2? and so on.




Motivation
#include <iostream> 
 
class Foo { 
private: 
    int data; 
public: 
    Foo(int data) { 
        this->data = data; 
    } 
}; 
 
int main() { 
    Foo f1 = Foo(42); 
    Foo f2 = Foo(77); 
    assert (f1 < f2); 
    return 0; 
} 

5

But this raises an error! "Invalid operands 
to binary expression ('Foo' and 'Foo')." 
 
We can't compare our Foos!




How do we fix this?

🤷
6



How do we fix this?

💁
7

Operator Overloading



Operator Overloading

8

By overloading an operator, we show C++ how to use it in the context of our 
class.  
 
For example, now we can override the < operator so we can compare Foos.


  friend bool operator < (const Foo& lhs, const Foo& rhs) { 

      return lhs.data < rhs.data; 

  } 



Operator Overloading

9

  friend bool operator < (const Foo& lhs, const Foo& rhs) { 

      return lhs.data < rhs.data; 

  } 

  friend bool operator > (const Foo& lhs, const Foo& rhs) { 

      return lhs.data > rhs.data; 

  } 



Operator Overloading

10

  friend bool operator <= (const Foo& lhs, const Foo& rhs) { 

      return lhs.data <= rhs.data; 

  } 

  friend bool operator >= (const Foo& lhs, const Foo& rhs) { 

      return lhs.data >= rhs.data; 

  } 



Operator Overloading

11

  friend bool operator == (const Foo& lhs, const Foo& rhs) { 

      return lhs.data == rhs.data; 

  } 

  friend bool operator != (const Foo& lhs, const Foo& rhs) { 

      return lhs.data != rhs.data; 

  } 


