THE UNIVERSITY OF VERMONT
COLLEGE OF ENGINEERING &

MATHEMATICAL SCIENCES

Operator Overloading

CS 124 / Department of Computer Science



Motivation

We create objects and would like certain operators to "understand” how to work
with these objects.

For example, in our introduction to C++ we overloaded two operators to work
with our lecturer class:

» Stream insertion operator, <<

e | ess than operator, <

Why can't we use these without overriding?



Motivation

#1nclude <jijostream>

class Foo {

private: /
int data;

public:
Foo(int data) {

this->data =
]

There seems to be a natural
ordering of Foo objects

based on the numeric values
of their data fields

data;
'

int main() {
Foo f1 = Foo(42);
Foo f2 = Foo(/7);
assert (fl < f2);
return 0;



Motivation

#1nclude <jijostream>

class Foo {
private:
int data;
public:
Foo(int data) {
this->data = data;
!

b So it would make sense if we

int main() { could compare Foos in this way.
Foo fl1 = Foo(42);
Foo f2 = Foo(77):/ Isfl > f2?1Isfl < 27 Does
assert (fl < f2); f1 == 27 and so on.

return 0;



Motivation

#1nclude <jijostream>

class Foo {
private:
int data;
public:
Foo(int data) {
this->data = data;

;

'

int main() {
00 13 - Fooi3%) But this raises an error! "Invalid operands
assert (fl < 2) ; <uu— t0 binary expression (‘Foo' and 'Foo')."
return 0;

;

We can't compare our Foos!



How do we fix this?




How do we fix this?

-—

’
»

Operator Overloading

>



Operator Overloading

By overloading an operator, we show C++ how to use it in the context of our
class.

For example, now we can override the < operator so we can compare Foos.

friend bool operator < (const Foo& lhs, const Foo& rhs) {

return lhs.data < rhs.data;



Operator Overloading

friend bool operator < (const Foo& lhs, const Foo& rhs) {

return lhs.data < rhs.data;

friend bool operator > (const Foo& lhs, const Foo& rhs) {

return lhs.data > rhs.data;



Operator Overloading

friend bool operator <= (const Foo& lhs, const Foo& rhs) {

return lhs.data <= rhs.data;

friend bool operator >= (const Foo& lhs, const Foo& rhs) {

return lhs.data >= rhs.data;

10



Operator Overloading

friend bool operator == (const Foo& lhs, const Foo& rhs) {
return lhs.data == rhs.data;

}

friend bool operator != (const Foo& lhs, const Foo& rhs) {
return lhs.data != rhs.data;

11



