THE UNIVERSITY OF VERMONT
COLLEGE OF ENGINEERING &

MATHEMATICAL SCIENCES

Shortest Path

Bellman-Ford Algorithm

CS 124 / Department of Computer Science



Shortest path

Dijkstra's algorithm doesn't work if there's an edge in the graph with
negative weight.
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Bellman-Ford

Given some graph, G = (V, E), and some starting node S € V, the Bellman-

Ford algorithm will find the shortest paths (or paths with minimum weight)
from S to all other nodes in V.

Note that G must not contain any negative weight cycles.



Shortest Path / Lowest Cost Path

Algorithm Dijkstra Bellman - Ford
Worst-case
complexity O((\V| + |E]) log |V]) O(|V| x |E|)

Edge weights must be

Restrictions .
non-negative

No negative cycles
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Bellman-Ford: pseudocode

function bellman_ford(G, S) // G 1is the graph; S is the starting node
for each node V 1in G
arrived_from[V] = null
if V=S
distancel[V]
else
distance[V] = infinite

0

repeat |V| - 1 times or until no distances are updated
for each edge (U, V) in E
distance = distancel[U] + weight of edge
1f distance < distancel[V] // We've found a shorter distance
distancel[V] = distance
arrived_from[V] = U

for each edge (U, V) in E
1f distancel[V] > distancel[U] + weight of edge
return "ERROR: negative weight cycle”
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Why do we need up to |V| - 1 iterations? If we have V| nodes, then the
shortest path can have no more than |V| - 1 edges. When we iterate, at the
kth iteration, we know we've covered all shortest paths up to length k. To
consider all possible shortest paths, we need k = |V| - 1.
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distance to V is greater than the sum of the distance to U plus the edge
weight from U -> V, then we know we have a negative cycle.
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for edge (U, V),

Be"man—FOrd if distance[V] > distance[U] + weight of edge

_ _ then we have a negative cycle
Negative cycle detection
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