THE UNIVERSITY OF VERMONT
COLLEGE OF ENGINEERING &

MATHEMATICAL SCIENCES

Shortest Path

Bellman-Ford Algorithm

CS 124 / Department of Computer Science

Shortest path

Dijkstra's algorithm doesn't work if there's an edge in the graph with
negative weight.

Lowest-cost path with negative weights

Fresno
Las Vegas

ar\
| Ll

—C

93

What can be done?

What can be done?
Bellman-Ford algorithm

Bellman-Ford

Given some graph, G = (V, E), and some starting node S € V, the Bellman-

Ford algorithm will find the shortest paths (or paths with minimum weight)
from S to all other nodes in V.

Note that G must not contain any negative weight cycles.

Shortest Path / Lowest Cost Path

Algorithm Dijkstra Bellman - Ford
Worst-case
complexity O((\V| + |E]) log |V]) O(|V| x |E|)

Edge weights must be

Restrictions .
non-negative

No negative cycles

What is a negative cycle?

What is a negative cycle?

What is a negative cycle?

What is a negative cycle?

What is a negative cycle?

What is a negative cycle?

What is a negative cycle?

Bellman-Ford: pseudocode

function bellman_ford(G, S) // G 1is the graph; S is the starting node
for each node V 1in G
arrived_from[V] = null
if V=S
distancel[V]
else
distance[V] = infinite

0

repeat |V| - 1 times or until no distances are updated
for each edge (U, V) in E
distance = distancel[U] + weight of edge
1f distance < distancel[V] // We've found a shorter distance
distancel[V] = distance
arrived_from[V] = U

for each edge (U, V) in E
1f distancel[V] > distancel[U] + weight of edge
return "ERROR: negative weight cycle”

Bellman-Ford: pseudocode

function bellman_ford(G, S) // G 1is the graph; S is the starting node
for each node V 1in G
arrived_from[V] = null
if V=S
distancel[V]
else
distance[V] = infinite

0

repeat |V| - 1 times or until no distances are updated
for each edge (U, V) in E
distance = distancel[U] + weight of edge
1f distance < distancel[V] // We've found a shorter distance
distancel[V] = distance
arrived_from[V] = U

for each edge (U, V) in E
1f distancel[V] > distancel[U] + weight of edge
return "ERROR: negative weight cycle”

Bellman-Ford: pseudocode

function bellman_ford(G, S) // G 1is the graph; S is the starting node
for each node V 1in G
arrived_from[V] = null
if V=S
distancel[V]
else
distance[V] = infinite

0

repeat |V| - 1 times or until no distances are updated
for each edge (U, V) in E
distance = distancel[U] + weight of edge
1f distance < distancel[V] // We've found a shorter distance
distancel[V] = distance
arrived_from[V] = U

for each edge (U, V) in E
1f distancel[V] > distancel[U] + weight of edge
return "ERROR: negative weight cycle”

V| =6

Bellman-Ford

AB

AF

BF

BC

DB

DC

DH

FD

HC

HF

V| =6

Bellman-Ford

First iteration

AB

AF

BF

BC

DB

DC

DH

FD

HC

HF

Bellman-Ford
7. A

First iteration

6, A

AB

AF

BF

BC

DB

DC

DH

FD

HC

HF

Bellman-Ford
7. A

First iteration

6, A

AB

AF

BF

BC

DB

DC

DH

FD

HC

HF

Bellman-Ford
7. A

First iteration

13, B

6, A

DC

DH

FD

HC

HF

Bellman-Ford
7. A

First iteration

13, B

6, A

FD

HC

HF

Bellman-Ford

First iteration

13, B

7/, A
" 4
/
0 5
(2)
2
6
V| =6 4
6, A

FD

HC

HF

Bellman-Ford

V| =6

First iteration

7, A 13, B

HC

HF

Bellman-Ford

V| =6

First iteration

13, B

HF

Bellman-Ford First iteration
7, A 13, B

V=6 (¥ (v
5

Bellman-Ford First iteration
7, A 13, B

V=6 (¥ (v
5

Bellman-Ford
7. A

Second iteration

13, B

AB

AF

BF

BC

DB

DC

DH

FD

V| =6

HC

6, A

HF

Bellman-Ford
7. A

Second iteration

13, B

AB

AF

BF

BC

DB

DC

DH

FD

V| =6

HC

6, A

HF

Bellman-Ford
7. A

Second iteration

13, B

AB

AF

BF

BC

DB

DC

DH

FD

V| =6

HC

6, A

HF

Bellman-Ford
7. A

Second iteration

6, A

DC

DH

FD

HC

HF

Bellman-Ford
3, D

Second iteration

13, B

6, A

FD

HC

HF

Bellman-Ford
3, D

Second iteration

5, D

6, A

FD

HC

HF

Bellman-Ford
3, D

Second iteration

5, D

6, A

HC

HF

Bellman-Ford

V| =6

Second iteration

5, D

HF

Bellman-Ford Second iteration
3, D 5,D

V=6 (¥ (v
5

Bellman-Ford Second iteration
3, D 5,D

V=6 (¥ (v
5

Bellman-Ford
3, D

Third iteration

5, D

AB

AF

BF

BC

DB

DC

DH

FD

V| =6

HC

6, A

HF

Bellman-Ford
3, D

Third iteration

5, D

AB

AF

BF

BC

DB

DC

DH

FD

V| =6

HC

6, A

HF

Bellman-Ford
3, D

Third iteration

5, D

6, A

DB

DC

DH

FD

HC

HF

Bellman-Ford
3, D

Third iteration

5, D

6, A

DC

DH

FD

HC

HF

Bellman-Ford
3, D

Third iteration

5, D

6, A

FD

HC

HF

Bellman-Ford
3, D

Third iteration

5, D

6, A

FD

HC

HF

Bellman-Ford Third iteration
3, D 5,D

SO O
5

HF

Bellman-Ford

V| =6

Third iteration

5, D

HF

Bellman-Ford Third iteration
3, D 5,D

V=6 (¥ (v
5

Bellman-Ford Third iteration
3, D 5,D

V=6 (¥ (v
5

Bellman-Ford
3, D

Check for negative cycles

5, D

AB

AF

BF

BC

DB

DC

DH

FD

V| =6

HC

6, A

HF

Bellman-Ford
3, D

Check for negative cycles

5, D

AB

AF

BF

BC

DB

DC

DH

FD

V| =6

HC

6, A

HF

Bellman-Ford
3, D

Check for negative cycles

5, D

AB

AF

BF

BC

DB

DC

DH

FD

V| =6

HC

6, A

HF

Bellman-Ford Check for negative cycles

3, D : 5, D
e 0
14 / A
O 5 8, F 3

ON (2 |
DC
2 ° DH
° FD

5

5, A 10, D i

Bellman-Ford Check for negative cycles
3, D 5, D

FD

5

HF

5, A 10, D

Bellman-Ford Check for negative cycles
3, D 5, D

FD

5

5, A 10, D i

Bellman-Ford Check for negative cycles
3, D 5, D

5

5, A 10, D i

Bellman-Ford Check for negative cycles
3, D 5, D

V=6 (¥ (v
5

HF

Bellman-Ford Check for negative cycles
3, D 5, D

V=6 (¥ (v
5

Bellman-Ford Check for negative cycles
3, D 5, D

V=6 (¥ (v
5

e T
1

Bellman-Ford

Why do we need up to |V| - 1 iterations?

Bellman-Ford

Why do we need up to |V| - 1 iterations? If we have V| nodes, then the
shortest path can have no more than |V| - 1 edges. When we iterate, at the
kth iteration, we know we've covered all shortest paths up to length k. To
consider all possible shortest paths, we need k = |V| - 1.

Bellman-Ford

Why do we need up to |V| - 1 iterations? If we have V| nodes, then the
shortest path can have no more than |V| - 1 edges. When we iterate, at the

kth iteration, we know we've covered all shortest paths up to length k. To
consider all possible shortest paths, we need k = |V| - 1.

How does the check for negative cycles work?

Bellman-Ford

Why do we need up to |V| - 1 iterations? If we have V| nodes, then the
shortest path can have no more than |V| - 1 edges. When we iterate, at the
kth iteration, we know we've covered all shortest paths up to length k. To
consider all possible shortest paths, we need k = |V| - 1.

How does the check for negative cycles work”? Once we've processed the
graph with |[V| - 1 iterations, we check weights. For each edge (U, V) if the
distance to V is greater than the sum of the distance to U plus the edge
weight from U -> V, then we know we have a negative cycle.

Bellman-Ford

Why do we need up to |V| - 1 iterations? If we have V| nodes, then the
shortest path can have no more than |V| - 1 edges. When we iterate, at the
kth iteration, we know we've covered all shortest paths up to length k. To
consider all possible shortest paths, we need k = |V| - 1.

How does the check for negative cycles work”? Once we've processed the
graph with |[V| - 1 iterations, we check weights. For each edge (U, V) if the
distance to V is greater than the sum of the distance to U plus the edge
weight from U -> V, then we know we have a negative cycle.

Bellman-Ford

Negative cycle detection

oo 0o -5, C 2, A -7, C 0, A

Initial state after 1 iteration after 2 iterations

for edge (U, V),

Be"man—FOrd if distance[V] > distance[U] + weight of edge

_ _ then we have a negative cycle
Negative cycle detection

0 -2, B

oo 0o -5, C 2, A -7, C 0, A

Initial state after 1 iteration after 2 iterations
4>-7/+3

Bellman-Ford

Why do we need up to |V| - 1 iterations? If we have V| nodes, then the
shortest path can have no more than |V| - 1 edges. When we iterate, at the
kth iteration, we know we've covered all shortest paths up to length k. To
consider all possible shortest paths, we need k = |V| - 1.

How does the check for negative cycles work”? Once we've processed the
graph with |[V| - 1 iterations, we check weights. For each edge (U, V) if the
distance to V is greater than the sum of the distance to U plus the edge
weight from U -> V, then we know we have a negative cycle.

Shortest Path

Algorithm Dijkstra Bellman - Ford
Worst-case
complexity O((\V| + |E]) log |V]) O(|V| x |E|)

Edge weights must be

Restrictions .
non-negative

No negative cycles

