
CS 124 / Department of Computer Science

Reference Variables
and passing by reference

What is a reference variable?
A reference variable is just another name we give a variable.

int foo = 255;

int& anotherName = foo

We use the & to indicate we are creating a reference variable. Notice
that this is different from using the same symbol to retrieve an address.

int* x = &foo;

Reference variables are just a reference
int foo = 255;
int& refFoo = foo;
int* fooPtr = &foo;
int* refFooPtr = &refFoo;

std::cout << foo << std::endl; // prints 255
std::cout << refFoo << std::endl; // prints 255
std::cout << fooPtr << std::endl; // prints an address
std::cout << refFooPtr << std::endl; // prints same address

255
255
0x7ffeeb898788
0x7ffeeb898788

Reference variables aren't copies
int foo = 255;
int& refFoo = foo;
refFoo = 42;

std::cout << foo << std::endl; // prints 42

We assigned a value of 42 to refFoo but foo is changed too. foo and
refFoo are one and the same thing, with different names.

What are reference variables good for?
Why go to the trouble?

What are reference variables good for?
Why go to the trouble?

PASS 👏

What are reference variables good for?
Why go to the trouble?

PASS 👏 BY 👏

What are reference variables good for?
Why go to the trouble?

PASS 👏 BY 👏 REFERENCE 👏

Pass by reference
Make your function argument(s) reference(s) and then your function can
change the value of the variable outside the function.

Pass by reference
void swap(int& x, int& y) { // takes inputs as reference
 int temp = x;
 x = y;
 y = temp;
}

int a = 42;
int b = 77;
swap(a, b);
std::cout << a << " " << b << std::endl;

Prints...

77 42 // a and b have been swapped

Pass by reference
void collatz(int& x) { // takes input as reference
 if (x % 2) {
 x = 3 * x + 1;
 } else {
 x = x / 2;
 }
}

int foo = 255;
collatz(foo);
std::cout << foo << std::endl;

Prints...

766 // foo has changed!

Review of usages in "Lecturer" class
When we coded our lecturer class, there were a number of places where we
passed by reference. We didn't discuss what was going on in detail at the time.
Now we'll revisit these points in the code.

Review of usages in "Lecturer" class
friend std::ostream& operator << (std::ostream& outs, const Lecturer& lec) {
 outs << std::setw(30) << lec.getName()
 << std::setw(5) << lec.getCourse1()
 << std::setw(5) << lec.getCourse2()
 << std::setw(8) << lec.getCourse3()
 << std::setw(20) << lec.getOffice();
 return outs;
}

Review of usages in "Lecturer" class
friend std::ostream& operator << (std::ostream& outs, const Lecturer& lec) {
 outs << std::setw(30) << lec.getName()
 << std::setw(5) << lec.getCourse1()
 << std::setw(5) << lec.getCourse2()
 << std::setw(8) << lec.getCourse3()
 << std::setw(20) << lec.getOffice();
 return outs;
}

Review of usages in "Lecturer" class
friend bool operator<(const Lecturer& lhs, const Lecturer& rhs) {
 return lhs.getName().length() < rhs.getName().length();
}

Review of usages in "Lecturer" class
friend bool operator<(const Lecturer& lhs, const Lecturer& rhs) {
 return lhs.getName().length() < rhs.getName().length();
}

Review of usages in "Lecturer" class
void readLecturersFromFile(std::string filename,
 std::vector<Lecturer>& lecturers) {

 ...

 Lecturer lec(name, office, course1, course2, course3);
 lecturers.push_back(lec);

 ...

}

Review of usages in "Lecturer" class
void readLecturersFromFile(std::string filename,
 std::vector<Lecturer>& lecturers) {

 ...

 Lecturer lec(name, office, course1, course2, course3);
 lecturers.push_back(lec);

 ...

}

