
CS 124 / Department of Computer Science

Pointers  
and Addresses

Photo credit: © Josh Bassett (https://joshbassettphoto.com)

https://joshbassettphoto.com

Memory addressing
Memory is a collection of locations, each of which can store one byte of
information. Every memory location has an address. Addresses are sequential.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n-1

Memory addressing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n-1

When we store some variable to memory, an appropriately-sized portion of
memory is reserved and the value is placed there.

Memory addressing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n-1

When we store some variable to memory, an appropriately-sized portion of
memory is reserved and the value is placed there.

For example, an int takes four bytes of memory, since it can hold values from –
2,147,483,648 to 2,147,483,647. Notice that 2,147,483,648 = 232 / 2. So an int
holds values in a range of size 232. Each byte is eight bits. So we need 32 bits,
or four bytes to hold an integer. This amount of memory is reserved for each int
regardless of its value. So all ints have the same size in memory.

1729

Sizes of various data types in C++

int 4 bytes

short 2 bytes

long 8 bytes

long long int 8 bytes

float 4 bytes

double 8 bytes

char 1 byte

boolean 1 byte

Memory addressing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n-1

int foo = 1729;

1729

foo

Pointers: Motivation
In general, we try not to use pointers, but there are times when they
are handy or necessary.

In a little while, we'll learn about how to handle large objects, dynamic
allocation, and objects that we wish to persist outside the scope in
which they're declared. In these cases, use of pointers is necessary. 
 
So here we're introducing pointers so they will be familiar to you when
we need them — specifically when creating our node and stack
classes.

Creating a pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n-1

int foo = 1729;

1729

int* fooPtr = &foo;

foo

Creating a pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n-1

int foo = 1729;

1729

int* fooPtr = &foo;

foo

Creating a pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n-1

int foo = 1729;

1729

int* fooPtr = &foo;

foo

Creating a pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n-1

int foo = 1729;

1729

int* fooPtr = &foo;

4

foo fooPtr

Creating a pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n-1

int foo = 1729;

1729

int* fooPtr = &foo;

4

foo fooPtr

Here we have the variable foo, which is an int, stored at address 4.
The variable fooPtr stores the address of foo — it is a pointer to
foo.

Dereferencing a pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n-1

int foo = 1729; int* fooPtr = &foo;

1729 4

foo fooPtr

Prints "1729" — the value, or the contents of, the memory address
pointed to by fooPtr.

std::cout << *fooPtr << std::endl;

Dereferencing a pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n-1

int foo = 1729; int* fooPtr = &foo;

1729 4

foo fooPtr

Now you can see why we have to tell C++ the type that's being pointed to.
How many bytes should the * operator retrieve when dereferencing? Unless
C++ knows the data type, it can't know how many bytes to retrieve when
dereferencing! Different data types have different lengths!

std::cout << *fooPtr << std::endl;

Sizes of various data types in C++

int 4 bytes

short 2 bytes

long 8 bytes

long long int 8 bytes

float 4 bytes

double 8 bytes

char 1 byte

boolean 1 byte

Pointer and address operators
You may read * as "content of" and & as "address of", hence:

int foo = 1729;
int* fooPtr = &foo;
std::cout << "The content of the address " << fooPtr
 << " is " << *fooPtr << std::endl;
std::cout << "The value " << foo
 << " is stored at " << &foo << std::endl;

Pointer and address operators
You may read * as "content of" and & as "address of", hence:

int foo = 1729;
int* fooPtr = &foo;
std::cout << "The content of the address " << fooPtr
 << " is " << *fooPtr << std::endl;
std::cout << "The value " << foo
 << " is stored at " << &foo << std::endl;

Prints...

The content of the address 0x7ffee56567c8 is 1729
The value 1729 is stored at 0x7ffee56567c8

What is 0x7ffee56567c8?
Numbers prefixed by 0x in C++ are in hexadecimal notation — and this is the
way pointers — memory addresses — are displayed. But you may think of
this as an int. A large int to be sure, and an int that refers to a memory
address, but an int nonetheless.

In C++ addresses are all the same size. This is determined by the size of the
address space, typically either 32 or 64 bits.

Note that if you compile and run the code on the previous slide, you'll get a
different hexadecimal address for foo.

Summary
• Every variable or object in C++ has some location in memory.

• We can create a pointer to any such variable or object by using the
appropriate syntax: <datatype of someVar>* someName =
&someVar; For example, we create a pointer to an integer foo with int*
fooPtr = &foo;

• * is the "content of" unary operator

• & is the "address of" unary operator

• "Dereferencing" is a fancy word for "getting the contents of some address"

