

Network Flows

Max flow / min cut: Ford-Fulkerson, part two

$$f_{u,v} \le c_{u,v}$$

$$\sum_{u:(u,v)\in E} f_{u,v} = \sum_{w:(v,w)\in E} f_{v,w}$$

$$\sum_{u:(s,u)\in E} = \sum_{w:(w,t)\in E}$$

$$\sum_{u:(u,v)\in E} f_{u,v} = \sum_{w:(v,w)\in E} f_{v,w}$$

$$\sum_{u:(s,u)\in E} = \sum_{w:(w,t)\in E} f_{v,w}$$

$$f_{u,v} \leq c_{u,v}$$

$$\sum_{u:(u,v)\in E} f_{u,v} = \sum_{w:(v,w)\in E} f_{v,w}$$

$$\sum_{u:(s,u)\in E} = \sum_{w:(w,t)\in E}$$

$$f_{u,v} \leq c_{u,v}$$

$$\sum_{u:(u,v)\in E} f_{u,v} = \sum_{w:(v,w)\in E} f_{v,w}$$

$$\sum_{u:(s,u)\in E} = \sum_{w:(w,t)\in E}$$

We have a problem!

Start over!

RESIDUAL

Now we have found the maximum flow

Problem: By a "bad" sequence of discoveries of augmenting paths, we might discover a "blocking flow" which prevents us from discovering other augmenting paths.

Problem: By a "bad" sequence of discoveries of augmenting paths, we might discover a "blocking flow" which prevents us from discovering other augmenting paths.

Solution: Encode a way of revising flows in the residual graph: add "backward" edges representing flow, in addition to "forward" edges representing unused capacity.

Ford-Fulkerson

- Initialize flow network to all zeros
- Initialize residual network with weights on forward edges to correspond capacities, and weights on backward edges to zero
- While augmenting paths exist in the residual graph
 - Update flow network by adding augmenting flow to corresponding edges
 - Update forward edges in residual network by deducting augmenting flow from corresponding edges
 - Update backward edges in residual network by adding augmenting flow to corresponding edges

Is this a greedy algorithm? Yes!

What's the complexity? $\mathcal{O}(|E|f)$

How do we find augmenting paths? It depends.

Is this a greedy algorithm? Yes!

What's the complexity? $\mathcal{O}(|E|f)$

How do we find augmenting paths? It depends.

- If we use breadth-first search, this is called Edmonds-Karp algorithm
- Worst case complexity of Edmonds-Karp $\mathcal{O}(|V| \times |E|^2)$

What we haven't discussed:

- Reals: rational- and irrational-valued capacities
- Proof of correctness
- Special applications of network flow (i.e., bipartite matching)