
CS 124 / Department of Computer Science

Hash Tables: Double Hashing



Double hashing
So far we've seen three collision resolution policies, separate chaining, linear 
probing, and quadratic probing.


Double hashing is another approach to resolving hash collisions.



Double hashing
We've seen that linear probing is prone to primary clustering.


Quadratic probing is designed to eliminate primary clustering, but we've seen 
that quadratic probing is prone to secondary clustering.


Double hashing is designed to address both these problems.



Quadratic probing vs linear probing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

linear

quadratic



Quadratic probing vs linear probing vs double hashing

linear

quadratic

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
?

double hashing

Stride is calculated by a secondary hash function



The secondary hash function
• Should be different from hash function used to get the index


• Output of primary hash function and secondary hash function should be 
pairwise independent -- that is, uncorrelated


• Should return values in the range 1 to (table size - 1)


• Should distribute values as uniformly as possible within this range



The secondary hash function
• Calculate some number, h, (by Horner's method or some other method)


• Return p - (h mod p), where p is some prime number less than the table size



Primary and secondary hash functions

• The primary hash function gives us the starting point of our probe sequence


• The secondary hash function gives us the stride (if we need to probe)



The secondary hash function
primary hash function secondary hash function

key f(x) = x % 17 g(x) = 13 - (x % 13)

0 0 13

1 1 12

2 2 11

3 3 10

... ... ...

25 8 1

... ... ...

32 15 7

... ... ...

163 10 6

... ... ...



The secondary hash function
primary hash function secondary hash function

key f(x) = x % 17 g(x) = 13 - (x % 13)

0 0 13

17 0 9

34 0 5

51 0 1

68 0 10

... ... ...



The secondary hash function
primary hash function secondary hash function

key f(x) = x % 17 g(x) = 13 - (x % 13)

0 0 13

17 0 9

34 0 5

51 0 1

68 0 10

... ... ...



Example: double hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Primary hash function 
f(x) = x % 17

Secondary hash function 
g(x) = 13 - (x % 13)



Example: double hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Primary hash function 
f(x) = x % 17

Secondary hash function 
g(x) = 13 - (x % 13)

Insert 5 : f(x) = 5; g(x) = 8



Example: double hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Primary hash function 
f(x) = x % 17

Secondary hash function 
g(x) = 13 - (x % 13)

Insert 5 : f(x) = 5; g(x) = 8

5



Example: double hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Primary hash function 
f(x) = x % 17

Secondary hash function 
g(x) = 13 - (x % 13)

Insert 56 : f(x) = 5; g(x) = 9

5



Example: double hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Primary hash function 
f(x) = x % 17

Secondary hash function 
g(x) = 13 - (x % 13)

Insert 56 : f(x) = 5; g(x) = 9

5



Example: double hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Primary hash function 
f(x) = x % 17

Secondary hash function 
g(x) = 13 - (x % 13)

Insert 56 : f(x) = 5; g(x) = 9

5 56



Example: double hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Primary hash function 
f(x) = x % 17

Secondary hash function 
g(x) = 13 - (x % 13)

Insert 39 : f(x) = 5; g(x) = 13

5 56



Example: double hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Primary hash function 
f(x) = x % 17

Secondary hash function 
g(x) = 13 - (x % 13)

Insert 39 : f(x) = 5; g(x) = 13

5 56



Example: double hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Primary hash function 
f(x) = x % 17

Secondary hash function 
g(x) = 13 - (x % 13)

Insert 39 : f(x) = 5; g(x) = 13

5 5639



Example: double hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Primary hash function 
f(x) = x % 17

Secondary hash function 
g(x) = 13 - (x % 13)

Insert 22 : f(x) = 5; g(x) = 4

5 5639



Example: double hashing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Primary hash function 
f(x) = x % 17

Secondary hash function 
g(x) = 13 - (x % 13)

Insert 22 : f(x) = 5; g(x) = 4

5 5639 22



What just happened?
primary hash function secondary hash function

key f(x) = x % 17 g(x) = 13 - (x % 13)

5 5 8 (not used)

56 5 9

39 5 13

22 5 4

Each of these inserts follows a different probe sequence



What's the probability of hash collisions having the same stride?

In order for hash collisions to have the same stride for their probe sequence, 
both the primary hash function and the secondary hash function would have 
to return the same value for two different keys.


In an ideal world, with "perfect" hash functions, the outputs would be 
distributed uniformly, just as if the hash functions were random. Then we'd 
have



What's the probability of hash collisions having the same stride?



Comparison of CRPs

Linear probing Quadratic probing Double hashing Separate chaining

On collisions we probe On collisions  
we extend the chain

Fixed upper limit on number of objects we can insert 
(size of hash table)

Only limited by 
memory / system 

constrants

Fixed stride 
(typically 1)

Stride changes on 
each step (step2)

Fixed stride calculated 
by second hash n/a

Prone to primary 
clustering

Prone to secondary 
clustering Reduces clustering Clustering does not 

occur



• We only allow a single object at a given index.


• Upon hash collisions, we probe our hash table, one step at a time, with a 
stride that's calculated by a second hash function.


• Because we use a second hash function, the stride depends on the data. 
This makes it very unlikely that two insertions, with the same hash value for 
the first index, would follow the same probe sequence. They'd have to 
have, in effect, two concurrent hash collisions!


• Double hashing has a fixed limit on the number of objects we can insert 
into our hash table.

Double hashing: summary



Questions
• We have two basic strategies for hash collision: chaining and probing 

(linear probing, quadratic probing, and double hashing are of the latter 
type). 


• Which do you think uses more memory?


• Which do you think is faster?


• How would you calculate their complexities?


