
CS 124 / Department of Computer Science

Bucket Sort & Radix Sort

Bucket Sort and Radix Sort
Bucket sort and radix sort work by distributing and collecting the elements to
be sorted. This is a different approach from any we have seen so far.

All the algorithms we've seen so far use comparison to perform the sort.
These algorithms can't do any better than O (n log n).

Bucket and radix sorting algorithms work best when we have more-or-less
uniformly distributed data.

Bucket sort works best when we have a limited range of possible values.

Bucket Sort
Bucketsort(vector)

 Make buckets

 Distribute the items into the buckets

 Sort the items within each bucket

 Gather the results back into the original vector

Bucket Sort
29 85 19 10 91 9 63 7 97 61

29 63
61

85
91
97

19
10
9
7

29 61
63

85
91
97

7
9
10
19

7 9 10 19 29 61 63 85 91 97

Bucket Sort
29 85 19 10 91 9 63 7 97 61

29 63
61

85
91
97

19
10
9
7

29 61
63

85
91
97

7
9
10
19

7 9 10 19 29 61 63 85 91 97

Bucket Sort
29 85 19 10 91 9 63 7 97 61

29 63
61

85
91
97

19
10
9
7

29 61
63

85
91
97

7
9
10
19

7 9 10 19 29 61 63 85 91 97

Bucket Sort
29 85 19 10 91 9 63 7 97 61

29 63
61

85
91
97

19
10
9
7

29 61
63

85
91
97

7
9
10
19

7 9 10 19 29 61 63 85 91 97

Bucket Sort
29 85 19 10 91 9 63 7 97 61

29 63
61

85
91
97

19
10
9
7

29 61
63

85
91
97

7
9
10
19

7 9 10 19 29 61 63 85 91 97

Bucket Sort
29 85 19 10 91 9 63 7 97 61

29 63
61

85
91
97

19
10
9
7

29 61
63

85
91
97

7
9
10
19

7 9 10 19 29 61 63 85 91 97

?

Bucket Sort
29 85 19 10 91 9 63 7 97 61

29 63
61

85
91
97

19
10
9
7

29 61
63

85
91
97

7
9
10
19

7 9 10 19 29 61 63 85 91 97

?

Bucket Sort
29 85 19 10 91 9 63 7 97 61

29 63
61

85
91
97

19
10
9
7

29 61
63

85
91
97

7
9
10
19

7 9 10 19 29 61 63 85 91 97

?

Bucket Sort

3000, 1000, 0, 2000

Bucket Sort

3000, 1000, 0, 2000

2001, 2010, 1999, 2002, 2000, 2008, 2009, 1998, 2004

Bucket Sort Complexity
Assuming data are reasonably uniformly distributed, and you have n elements
and m buckets:

• Distributing takes n steps.

• Sorting each bucket takes f(n / m) steps where f is the run-time of the
function used to sort the buckets. With m buckets this gives us m x f(n / m).

• Gathering takes n steps.

Comparison

Algorithm Time
complexity

Space
complexity Stable Comment

Bubble sort O (n2) O (1) yes can tell if list is already sorted

Selection
sort O (n2) O (1) no performs fewest swaps

Insertion sort O (n2) O (1) yes ignores unsorted portion of vector

 / can process data on-line

Merge sort O (n log n) O (n) yes recursive divide-and-conquer

Quicksort O (n log n) O (1) no recursive divide-and-conquer

Bucket sort O (n + m) O (n + m) depends requires certain properties of the
data to be effective

Radix Sort
Radix sort is a related algorithm that works with data that can be sorted
lexicographically. Lexicographic sorting is just like sorting words in a
dictionary.

Here we'll take a look at sorting numbers based on their digits -- working
from the least significant digit to the most significant digit. 
 
"Radix" is just another word for "base", as in "base two" for binary, or "base
10" in our everyday counting system.

Radix Sort
Radix sort is a related algorithm that works with data that can be sorted
lexicographically. Lexicographic sorting is just like sorting words in a
dictionary.

Here we'll take a look at sorting numbers based on their digits -- working
from the least significant digit to the most significant digit.

"Radix" is just another word for "base", as in "base two" for binary, or "base
10" in our everyday counting system.

Radix sort's complexity is O (n x d). So radix sort can outperform O (n log n)
algorithms when d < log n.

Radix Sort

Image source: National Museum of American History

Radix Sort
Radix sort (vector) 
 Make buckets (10) 
 For each digit:  
 For each element:  
 Distribute element into the appropriate bucket based on digit  
 For each bucket:  
 Gather the results back into the original vector

Radix Sort

192, 379, 012, 457, 004, 275, 014, 203

Radix Sort

192, 379, 012, 457, 004, 275, 014, 203

Radix Sort

192, 012, 203, 004, 014, 275, 457, 379

Radix Sort

192, 012, 203, 004, 014, 275, 457, 379

Radix Sort

203, 004, 012, 014, 457, 275, 379, 192

Radix Sort

203, 004, 012, 014, 457, 275, 379, 192

Radix Sort

004, 012, 014, 192, 203, 275, 379, 457

Radix Sort

004, 012, 014, 192, 203, 275, 379, 457

Radix
How do we get the value of a given digit without performing comparisons?

We take the number, divide by the appropriate power of our radix (or base)
and then take that value modulo the radix. Example, base 10:

To get the third digit of 2708, we integer divide by 102 which gives us 27,
and then 27 % 10 = 7.

insert video here

Comparison
Algorithm Time

complexity
Space

complexity Stable Comment

Bubble sort O (n2) O (1) yes can tell if list is already sorted

Selection sort O (n2) O (1) no performs fewest swaps

Insertion sort O (n2) O (1) yes ignores unsorted portion of vector

 / can process data on-line

Merge sort O (n log n) O (n) yes recursive divide-and-conquer

Quicksort O (n log n) O (1) no recursive divide-and-conquer

Bucket sort O (n + m) O (n + m) depends requires certain properties of the data
to be effective

Radix sort O (nd) O (n + d) yes requires data that can be sorted
lexicographically

Summary
• Bucket sort and radix sort perform sorting without making comparisons

• Distribute and collect

• They can outperform O (n log n) algorithms, but only under certain
circumstances, i.e., data have to have certain properties -- both in terms
of data type and distribution.

