
CS 124 / Department of Computer Science

Binary Search Tree (BST)



What is a binary search tree?
A binary search tree is a rooted, binary tree that is sorted. 

A binary tree is a tree in which every node has either 0, 1 or 2 children.


Given an interior node in the tree, the node's left subtree contains only values 
less than that of the node, and the node's right subtree contains only values 
greater than that of the node.



What is a binary search tree?
In a binary search tree: 


• any values that appear in the tree appear exactly once (no duplicate values), 
and 


• in-order traversal yields a sorted list of all values in the tree.



Constructing a binary search tree
Let's pick some numbers at random:


25, 21, 9, 17, 13, 36, 18, 2, 42, 28, 12, 45


...and construct a tree



Constructing a binary search tree

25


25



Constructing a binary search tree

25, 21


21

25



Constructing a binary search tree

25, 21, 9


21

9

25



Constructing a binary search tree

25, 21, 9, 17


21

9

17

25



Constructing a binary search tree

25, 21, 9, 17, 13


21

9

17

25

13



Constructing a binary search tree

25, 21, 9, 17, 13, 36


21

9

17

36

25

13



Constructing a binary search tree

25, 21, 9, 17, 13, 36, 18


21

9

17

36

25

13 18



Constructing a binary search tree

25, 21, 9, 17, 13, 36, 18, 2


21

9

17

36

25

2

13 18



Constructing a binary search tree

25, 21, 9, 17, 13, 36, 18, 2, 42


21

9

17

36

42

25

2

13 18



Constructing a binary search tree

25, 21, 9, 17, 13, 36, 18, 2, 42, 28


21

9

17

36

28 42

25

2

13 18



Constructing a binary search tree

25, 21, 9, 17, 13, 36, 18, 2, 42, 28, 12


21

9

17

36

28 42

25

2

13 18

12



Constructing a binary search tree

25, 21, 9, 17, 13, 36, 18, 2, 42, 28, 12, 45


21

9

17

36

28 42

45

25

2

13 18

12



Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12



Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

2




Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

2, 9




Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

2, 9, 12




Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

2, 9, 12, 13




Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

2, 9, 12, 13, 17




Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

2, 9, 12, 13, 17, 18




Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

2, 9, 12, 13, 17, 18, 21




Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

2, 9, 12, 13, 17, 18, 21, 25




Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

2, 9, 12, 13, 17, 18, 21, 25, 28




Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

2, 9, 12, 13, 17, 18, 21, 25, 28, 36




Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

2, 9, 12, 13, 17, 18, 21, 25, 28, 36, 42




Constructing a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

2, 9, 12, 13, 17, 18, 21, 25, 28, 36, 42, 45




21

9

17

36

28 42

45

25

2

13 18

12

Searching a binary search tree
13



Searching a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

13

25? 13 < 25. Go left. 



Searching a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

13

25? 13 < 25. Go left.

21? 13 < 21. Go left. 



Searching a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

13

25? 13 < 25. Go left.

21? 13 < 21. Go left.

9? 13 > 9. Go right. 



Searching a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

13

25? 13 < 25. Go left.

21? 13 < 21. Go left.

9? 13 > 9. Go right.

17? 13 < 17. Go left. 



Searching a binary search tree

21

9

17

36

28 42

45

25

2

13 18

12

13

25? 13 < 25. Go left.

21? 13 < 21. Go left.

9? 13 > 9. Go right.

17? 13 < 17. Go left.

13? 13 = 13. FOUND IT! 



21

9

17

36

28 42

45

25

2

13 18

12

Searching a binary search tree
37 (not in tree)



21

9

17

36

28 42

45

25

2

13 18

12

Searching a binary search tree
37 (not in tree)

25? 37 > 25. Go right.



21

9

17

36

28 42

45

25

2

13 18

12

Searching a binary search tree
37 (not in tree)

25? 37 > 25. Go right.

36? 37 > 36. Go right.



21

9

17

36

28 42

45

25

2

13 18

12

Searching a binary search tree
37 (not in tree)

25? 37 > 25. Go right.

36? 37 > 36. Go right.

42? 37 < 42. Go left.



21

9

17

36

28 42

45

25

2

13 18

12

Searching a binary search tree
37 (not in tree)

25? 37 > 25. Go right.

36? 37 > 36. Go right.

42? 37 < 42. Go left.

42 has no left child!

NOT FOUND. NULL



Complexity of search

Complete or perfect tree?  
O(log N)



Complexity of search

Complete or perfect tree?  
O(log N)

Pathological tree?  
O(h) = O(N - 1) = O(N)



Deleting nodes in a BST
Can get a wee bit tricky / four cases

• Target node is a leaf. Delete the node.


• Target node has one child. Delete the node and replace it with its child.


• Target node has two children:


• Target node's left child has no right child. Delete the node and replace it with 
its left child.


• Target node's left child has a right child. From the target node's left child's 
right child, continue to probe down through the tree, following right children 
until you can proceed no further. Replace the target node with the node 
found by probing. If the node found by probing has a left child, replace that 
node with its left child.



Deleting nodes in a BST
Case 1: Target node is a leaf.

21

9

17

36

28 42

45

25

2

13 18

12



Deleting nodes in a BST
Case 1: Target node is a leaf.

21

9

17

36

28 42

45

25

2

13 18

12

X



Deleting nodes in a BST
Case 1: Target node is a leaf.

21

9

17

36

28 42

45

25

2

13 18

12

X

X



Deleting nodes in a BST
Case 1: Target node is a leaf.

21

9

17

36

28 42

45

25

2

13 18

12

X

X
X



Deleting nodes in a BST
Case 1: Target node is a leaf.

21

9

17

36

28 42

45

25

2

13 18

12

X

X
X

X



Deleting nodes in a BST
Case 1: Target node is a leaf.

21

9

17

36

28 42

45

25

2

13 18

12

X

X
X

X
X



Deleting nodes in a BST
Case 1: Target node is a leaf.

21

9

17

36

42

25

13



Deleting nodes in a BST
Case 2: Target node has one child.

21

9

17

36

28 42

45

25

2

13 18

12



Deleting nodes in a BST
Case 2: Target node has one child.

21

9

17

36

28 42

45

25

2

13 18

12

X

X



Deleting nodes in a BST
Case 2: Target node has one child.

21

9

17

36

28 42

45

25

2

13 18

12

X

X



Deleting nodes in a BST
Case 2: Target node has one child.

21

9

17

36

28 45

25

2

12 18



Deleting nodes in a BST
Cases 3 & 4: Target node has two children

21

9

17

36

28 42

45

25

2

13 18

12



Deleting nodes in a BST
Case 3: Target node has two children, but left child has no right child.

21

9

17

36

28 42

45

25

2

13 18

12



Deleting nodes in a BST
Case 3: Target node has two children, but left child has no right child.

21

9

17

36

28 42

45

25

2

13 18

12

X



Deleting nodes in a BST
Case 3: Target node has two children, but left child has no right child.

21

9

13

36

28 42

45

25

2

12 18



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

47

38 49

22

40

27 35



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

47

38 49

22

40

27 35

X



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

47

38 49

22

40

27 35

X



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

40

38 49

22

27 35



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

47

38 49

22

40

27 35 42

45



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

47

38 49

22

40

27 35 42

45

X



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

47

38 49

22

40

27 35 42

45

X



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

47

38 49

22

40

27 35 42

45

X



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

45

38 49

22

40

27 35 42



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

47

38 49

22

40

27

42

44



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

47

38 49

22

40

27

42

44

X



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

47

38 49

22

40

27

42

44

X



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

47

38 49

22

40

27

42

44

X



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

47

38 49

22

40

27

42

44

X



Deleting nodes in a BST
Case 4: Target node has two children, but left child has a right child.

15

8

32

44

38 49

22

40

27 42



Complexity of BST operations

Insert node Search Delete node

Average case O(log N) O(log N) O(log N)

Worst case O(N) O(N) O(N)


