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A highly replicable decline in mood during 
rest and simple tasks

David C. Jangraw    1,2  , Hanna Keren3, Haorui Sun2, Rachel L. Bedder4,5, 
Robb B. Rutledge    4,5,6, Francisco Pereira1, Adam G. Thomas    1, Daniel S. Pine1, 
Charles Zheng    1, Dylan M. Nielson    1,9 & Argyris Stringaris    7,8,9

Does our mood change as time passes? This question is central to 
behavioural and affective science, yet it remains largely unexamined. 
To investigate, we intermixed subjective momentary mood ratings into 
repetitive psychology paradigms. Here we demonstrate that task and rest 
periods lowered participants’ mood, an effect we call ‘Mood Drift Over 
Time’. This finding was replicated in 19 cohorts totalling 28,482 adult and 
adolescent participants. The drift was relatively large (−13.8% after 7.3 min 
of rest, Cohen’s d = 0.574) and was consistent across cohorts. Behaviour 
was also impacted: participants were less likely to gamble in a task that 
followed a rest period. Importantly, the drift slope was inversely related 
to reward sensitivity. We show that accounting for time using a linear term 
significantly improves the fit of a computational model of mood. Our work 
provides conceptual and methodological reasons for researchers to account 
for time’s effects when studying mood and behaviour.

An important but implicit notion among behavioural and affective 
scientists is that each participant has a baseline mood or affective 
state that will remain constant during an experiment or vary only with 
emotionally salient events1. Mood is modelled as a discounted sum of 
rewards and punishments2,3, but many models hold that the timescale 
over which these events unfold is irrelevant and the passage of time 
itself has no effect on mood.

This assumption of a constant affective background has profound 
methodological implications for psychological experiments. First, 
consider a ‘resting state’ functional brain scan in which a participant 
is asked to stare at a fixation cross. On the basis of the constant affec-
tive background assumption, comparisons of resting-state neuro-
imaging data between (for example) depressed and non-depressed 
participants are thought to reveal differences in their task-general 
traits, rather than their response to experimentally imposed rest peri-
ods. Second, consider an event-related design, such as a gambling or 

face recognition task, during which participants experience stimuli 
(wins or losses) that elicit emotional reactions. When analysing these 
data, responses to task stimuli are thought to occur on top of (and are 
often contrasted to) the affective baseline, which is presumed to be  
time invariant.

While convenient, this assumption of a constant affective back-
ground contradicts evidence from multiple fields that time impacts 
mood and behaviour. Affective chronometry research has demon-
strated that affect changes systematically with time after an affective 
stimulus4–7, and that individuals vary in the rates at which positive or 
negative affect decays after an event8,9. Such individual differences 
may be linked to mental health. For instance, psychopathologists 
theorize that anhedonia, a symptom of both depression and schizo-
phrenia, arises from a failure to sustain reward responses for a nor-
mative period of time10. And studies of attention deficit hyperactivity 
disorder suggest that hyperactivity’s impulsive behaviour results from 
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to observe the effects of rest on rational behaviour, to maintain links 
with previous studies of mood and reward2,3,32, and to enable related 
analyses on a large cohort of participants (n = 26,896) playing a similar 
game on their smartphones33 (Fig. 1b). A list of the cohorts we examined 
is in Extended Data Table 1). To quantify time’s effect on mood, we cre-
ated a linear mixed effects (LME) model with terms for initial mood and 
mood slope (that is, change in mood per unit time) as random effects 
that were fitted to each subject’s data. The factors of interest described 
in the following sections were included in the model as fixed effects 
(Methods). One factor of particular interest is a depression risk score 
for each participant, a continuous value defined as their score on the 
Mood and Feelings Questionnaire (MFQ, for adolescents) or the Center 
for Epidemiologic Studies Depression Scale (CES-D, for adults) divided 
by a clinical cut-off, that is, MFQ/12 or CES-D/16. The model was fitted to 
the cohort of all participants who experienced an opening period of rest, 
visuomotor task or random gambling. The slope parameter learned for 
each participant was used to quantify that participant’s mood drift. The 
distribution of slopes was assumed to be Gaussian34, but LME models 
are robust to violations of this assumption35. All statistical tests used 
were two-sided unless otherwise specified.

As the smartphone game cohort was large enough to fit hyper
parameters in a held-out set of participants, this cohort’s mood  
ratings were also fitted to a computational model that estimates  
each participant’s initial mood and their sensitivity to rewards, reward 
prediction and time (Methods). The model’s time sensitivity parameter 
for each participant was used to quantify their mood drift.

Mood Drift Over Time is sizeable during rest. Our first objective was 
to estimate the size of the effect. In our initial cohort (called 15sRest-
Between in Extended Data Table 1) of 40 adults recruited on Amazon 
Mechanical Turk (MTurk), we asked whether mood would change 
consistently during a rest period that preceded a gambling game. We 
observed a gradual decline in mood over time (Fig. 2a, blue line). After 
9.7 min of rest, the change in mood was considerable (mean ± standard 
error (SE) 22.4 ± 4.15% of the mood scale). We replicated this in five 
other adult MTurk cohorts that received shorter opening rest periods 
(Fig. 2a, other lines).

Mood Drift Over Time is robust to methodological choices. To 
examine possible methodological confounds, we created slightly 
modified versions of the task to see whether the observed decline in 
mood ratings might be due to the following:

	1.	 The aversive nature of rating one’s mood: we did not find evidence 
that more frequent ratings changed mood drift (inter-rating  
interval × time interaction −0.0103% mood, 95% confidence  
interval (CI) −0.0267% to 0.0061%, t810 = −1.23, P = 0.219, two- 
sided, Extended Data Fig. 1).

	2.	 The method of rating mood and its susceptibility to fatigue: we 
did not find evidence that making every mood rating require an 
equally easy single keypress changed mood drift (−2.22 versus 
−2.45 %mood min−1, 95% CI −0.772 to 1.23, t70 = 0.427, P = 0.671, 
two-sided).

	3.	 The expected duration of the rest period: groups expect-
ing different rest durations did not have different mood drift  
(−1.47 versus −1.53 %mood min−1, 95% CI −0.613 to 0.743, t104 = 0.185,  
P = 0.854, two-sided).

	4.	 Multitasking or task switching: participants moved their mood 
rating slider on 97.7% of trials.
The results of these control analyses suggested that mood drift 

cannot be explained by these methodological factors (Supplementary 
Note C).

Mood Drift Over Time occurs during tasks. To see whether this 
decline was specific to rest or more generally linked to time on task, 
we administered two variants of the task. The first variant (cohort 

delay aversion, the idea that a delay is itself unpleasant and impulsivity 
is simply a rational choice to avoid it11–13.

Economists speak of the opportunity cost of time, suggesting that 
time spent performing one activity incurs the cost of other alternatives 
they might have chosen instead (such as paid work or leisure)14–16. This 
idea is fundamental to the explore/exploit question that has recently 
preoccupied neuroscientists17–19. Affect is central to this question: it 
is currently thought that negative affective states (such as boredom) 
building over time provide the subjective motivation to switch to a 
different activity20,21.

When participants are engaged in a psychological task or rest 
period, they are committed to exploiting that task environment and are 
unable to explore other activities. This sense of constraint, or reduced 
agency, is considered central to feelings of boredom and its associated 
negative affect22. We might therefore conceive of a psychological task’s 
behavioural constraint as a sort of negative affective stimulus that 
could gradually draw mood downward.

If this is true and the constant affective background assumption is 
violated, this could be problematic given evidence that spontaneous 
affective changes vary systematically between the individuals and 
groups being compared in affective science. For example, spontaneous 
negative thoughts are known to occur and vary substantially between 
humans, as highlighted by extensive work in mind wandering (MW)23–26. 
Similarly, it is well known from occupational psychology that periods 
of low or relatively constant stimulation (as occurs in rest or repetitive 
experimental tasks) can induce varying levels of boredom27,28. These 
insights raise the possibility that mood states will follow a similar 
pattern of inter-individual variability, creating potential confounds 
for resting-state and event-related experiments. However, the size, 
stability and clinical correlates of this variability remain unexplored.

In this Article, to answer these fundamental questions, we examine 
how the passage of time affects mood in a variety of experiments across 
studies, participants and settings. We find that participants’ mood 
worsened considerably during rest periods and simple tasks, an effect 
we call ‘Mood Drift Over Time’ (‘mood drift’ for short). This downward 
mood drift was replicated in 19 large and varied cohorts, totalling 116 
healthy and depressed adolescents recruited in person, 1,913 adults 
recruited online from across the United States, and 26,896 participants 
performing a gambling task in a mobile app. It was not observed when 
participants freely chose their own activities. We show that mood drift 
is related to, but not a trivial extension of, the existing constructs of 
boredom and thought content (including the task-unrelated thought 
often considered central to MW). We show that mood drift slopes are 
positively correlated with reward sensitivity and that this relation-
ship is moderated by overall life happiness. These findings may have 
profound implications for experimental design and interpretation in 
affective science.

Results
Characterizing the effect
The results to follow characterize the average person’s gradual decline 
in mood during rest and simple tasks, a phenomenon we call ‘Mood Drift 
Over Time’ (‘mood drift’ for short). This effect was initially observed in 
a task where participants were periodically asked to rate their mood 
(Fig. 1a). Between these mood ratings, the initial cohort was first asked 
to stare at a central fixation cross. They were told that the rest period 
would last up to 7 min and that they would be asked to rate their mood 
‘every once in a while’. The mood ratings observed during this rest period 
inspired a number of slightly modified tasks to better characterize the 
effect and eliminate methodological confounds. Each modification 
was presented to a new cohort of naïve participants so that memory 
and expectations would not affect their mood ratings. Each cohort 
also played a gambling game at some point in the task, in which they 
chose between an uncertain gamble or a certain outcome. This task is 
a standard one commonly used to examine mood3,29–31. It was included 
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Visuomotor-Feedback, n = 30) was designed to mimic rest very closely 
while requiring the participant to respond regularly and giving feed-
back on their performance. Specifically, a fixation cross moved back 
and forth periodically across the screen, the participant was asked to 
press a button whenever it crossed the centreline, and each response 
would make the cross turn green if the response was accurate or red 
if it was too early or late (Methods). In the second variant (cohort 
Daily-Random-01, n = 66), the subject played a random gambling game 
in which gambling outcomes and reward prediction errors (RPEs) 
were both random with mean zero. Both of these tasks produced 
similar mood timecourses, and we did not find evidence of a differ-
ence between the LME slope parameters of this group and those of 
the original cohort (−2.19 versus −2.45 %mood min−1, 95% CI −0.876 
to 1.40, t68 = 0.437, P = 0.663 for visuomotor task, −1.91 versus −2.45 
%mood min−1, 95% CI −0.453 to 1.52, t104 = 1.07, P = 0.287 for random 
gambling, both two-sided) (Fig. 2b).

Mood Drift Over Time is generalizable. We next investigated the 
generalizability of this result across age groups and recruitment 
methods. To do this, we collected similar rest + gambling data via 
an online task from adolescent participants recruited in person at 
the National Institute of Mental Health in Bethesda, MD and asked 
to complete the task online via their home computers (Methods). 
This group (Adolescent-01, n = 116) showed a pattern of declining 
mood similar to that observed in the MTurk cohort (Fig. 2c) (−1.69 
versus −1.93 %mood min−1, 95% CI −0.122 to 0.599, t884 = 1.09, P = 0.275,  
two-sided).

To more precisely characterize the effect, we fitted a large LME 
model to the complete cohort of online participants (both adults and 

adolescents) completing rest or simple tasks in the first block (Extended 
Data Table 2). The mood drift parameter (rate of mood decline 
with time) for these 886 participants was mean ± SE −1.89 ± 0.185 
%mood min−1, which was significantly less than 0 (t864 = −10.3, P < 0.001. 
After 7.3 min (the mean duration of the first block of trials), the mean 
decrease in mood estimated by this LME model was 13.8% of the mood 
scale. This corresponds to a Cohen’s d of 0.574, with a 95% CI of 0.464 
to 0.684 (ref. 36).

Mood drift is diminished in a mobile app gambling game. We 
next tested whether mood drift could be observed in a large dataset 
(n = 26,896) of mood ratings during a similar gambling task played on a 
mobile app. All analyses were applied to an exploratory cohort of 5,000 
of these participants, then re-applied to the confirmatory cohort of all 
remaining participants after pre-registration (https://osf.io/paqf6). 
We applied the LME modelling procedure to this confirmatory cohort 
and again found a slope parameter that was significantly below zero at 
the group level (mean ± SE −0.881 ± 0.0613 %mood min−1, t22,804 = −14.4, 
P < 0.001). It is notable that, even in this relatively engaging game (in 
which tens of thousands of participants completed the task despite not 
being paid for participating or penalized for failing to finish), mood 
tended to decrease with time spent on task.

We note, however, that mood drift was significantly smaller in this 
cohort (median −0.752, inter-quartile range (IQR) 2.10 %mood min−1) 
than in the combined cohort of online participants (median −1.53, IQR 
2.34 %mood min−1, two-sided Wilcoxon rank-sum test, W21,761 = −14.5, 
P < 0.001; Extended Data Fig. 2). In total, 87.5% of online participants 
had negative slopes in the LME analysis, whereas only 70.2% of mobile 
app participants did. A histogram of the LME slope parameters for 
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Fig. 1 | One cycle (mood rating + task). a,b, Cycle administered to online 
participants (a) and mobile app participants (b). After completing their 
first mood rating, participants completed one cycle of the rest, gambling or 
visuomotor task, then completed another mood rating, and so on. ITI denotes 

inter-trial interval. In the case of the rest and visuomotor tasks, the cycle duration 
was determined by time. In the case of the gambling task, it was determined by 
the time taken to complete two or three (randomized) trials of the gambling task.
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online and mobile app participants is plotted in Fig. 3. This shows that, 
as one might expect, mood drift is sensitive to task context.

Next, to disentangle mood drift from the effects of reward and 
RPE in this dataset, we fitted the computational model described in 
Methods to the mobile app data. Including the mood slope parameter 
in the model decreased the mean squared error on testing data (the last 
two mood ratings of the task) from 0.336% to 0.325% of the mood scale 
for the median subject across regularizations, a significant improve-
ment (IQR 0.00197%, two-sided Wilcoxon signed-rank test, W499 = 0, 
P < 0.001). This suggests that time on task affected a participant’s mood 
beyond the impacts of reward and expectation, and did so in a way that 
was stable within individuals because improved fits were observed in 

held-out data. Fits and parameter distributions can be seen in Extended 
Data Figs. 3 and 4. The distribution of participants’ time sensitivity 
parameters βT (which can be interpreted as mood drift independent 
of reward effects) was centred significantly below zero (mean ± SE 
−0.128 ± 0.00668 %mood min−1, two-sided Wilcoxon signed-rank test 
W21,895 = 1.00 × 108, P < 0.001).

Mood Drift Over Time is absent in freely chosen activities. After the 
surprising finding that mood drift appeared during an engaging mobile 
app game, we wondered whether this phenomenon would be observed 
in daily life, outside the context of a psychological task. We therefore 
designed and pre-registered (https://osf.io/gt7a8) a task in which the 
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Fig. 2 | The timecourse of mood drift is consistently present across many 
cohorts and task modulations. These plots each show the mean timecourse 
of mood across participants in various online cohorts for the first block of the 
task. Each participant’s mood between ratings was linearly interpolated before 
averaging across participants. The shading around each line represents the 
standard error of the mean. Each name in the legend corresponds to a cohort 
completing a slightly different task (Extended Data Table 1). Mean initial mood 
refers to the mean of cohort means, not the mean of subject means. a, Mean 
timecourse of mood ratings during an opening rest period in all Amazon 

Mechanical Turk (MTurk) cohorts that received it. Mood drift was discovered  
in one cohort (blue line) and replicated in five independent naïve cohorts.  
b, Mood drift was observed not only in rest periods (blue), but also in a simple 
task requiring action and giving feedback (orange), and in a random gambling 
task with 0-mean RPEs and winnings (green). c, Mood drift was observed both 
in adults recruited on MTurk (combining across all MTurk participants that 
received opening rest or visuomotor task periods) (blue) and in adolescents 
recruited in person (orange).
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initial rest period was replaced with 7 min of free time, during which 
the participant could pursue activities of their choice. Participants 
completing this task (cohort Activities, n = 450) were asked to rate their 
mood just before and just after the break period. They were then asked 
to report what they did. The most frequent activities reported were 
thinking, reading the news and standing up (Supplementary Table 3).

This group was the first sample investigated in this study that did 
not exhibit mood drift. The mood ratings just after the free period 
were not statistically different from the mood ratings before the free 
period (66.6% versus 65.7%, 95% CI −2.15% to 97%, t449 = −1.33, one-tailed 
PH0:decrease = 0.0918, PH0:increase = 0.908). This change in mood was sig-
nificantly greater than that of a cohort who received the standard 
rest period with interspersed mood ratings (cohort BoredomAfter-
Only, n = 150) (0.909% versus −8.11%, 95% CI 5.95% to 12.1%, t598 = 6.28, 
P < 0.001, two-sided). This shows that, perhaps unsurprisingly, mood 
drift is not universal to all activities. However, the nominal increase in 
mood during this period (0.130 %mood min−1) was much smaller than 
the decrease in mood observed during a typical rest period (−1.89 
%mood min−1). Each minute in which participants could choose their 
activity raised their collective mood less than 10% of the mood decline 
experienced during a minute of rest.

Inter-individual differences
Having characterized the effect at the group level, we next turned our 
attention to the individual. The motivation for this line of analysis is 
that, if an individual’s mood slope is different from that of others in a 
way that remains stable over days or weeks, it may be linked to traits 
of clinical and theoretical interest. While the group average mood 
drift is negative during rest and simple tasks, there is considerable 
variation across participants (2.5th–97.5th percentile of subject-level 
mood drift for online participants −7.23 to 1.79 %mood min−1)  
(Fig. 3). Using an intraclass correlation coefficient (ICC) on cohorts 
that completed the task more than once, we found that these individ-
ual differences had moderate, statistically significant stability across 
blocks (ICC(2, 1) = 0.465, P < 0.001), days (ICC(2, 1) = 0.343, P = 0.0031) 
and weeks (ICC(2, 1) = 0.411, P < 0.001, one-sided since ICC values are 

expected to be positive) (Extended Data Fig. 5, Supplementary Note D).  
We therefore investigated the relationship between this variability and 
other traits of clinical and theoretical interest.

Mood drift is associated with sensitivity to rewards. Mood is central  
to depression, which is thought to relate aetiologically to reward 
responsiveness37,38. The idea that mood drift might be related to this 
responsiveness prompted us to investigate the relationship between 
participants’ mood drift, reward sensitivity and life happiness in our 
computational model fits. The time sensitivity/mood drift parameter βT 
was anticorrelated with the reward sensitivity parameter βA (rs = −0.106, 
P < 0.001, two-sided) (Fig. 4, left). This anticorrelation was weaker in 
participants with life happiness below the median (that is, those at 
greater risk of depression) than it was in those at/above it (rs = −0.0513 
versus −0.14, Z = 6.41, P < 0.001, two-sided) (Fig. 4, right). This suggests 
that people more sensitive to the passage of time are also more sensi-
tive to rewards, and that this relationship is less pronounced in those 
with greater depression risk.

The direct relationship between depression risk and mood 
drift was significant, but its effect on model fit was very small. In 
our online participant LME model, higher depression risk score was 
significantly associated with less negative mood drift (depression 
risk × time interaction, mean ± SE 0.515 ± 0.109 %mood min−1, t869 = 4.75, 
P < 0.001; Extended Data Fig. 6). While the model fit improved, the 
within-individual variance explained by the addition of this interac-
tion term was very small (f 2 = 0.00289) (refs. 39,40). Nevertheless, the 
interaction term’s significance was replicated in two more independent 
cohorts (including the mobile app cohort, where time sensitivity and 
life happiness were weakly anticorrelated; Extended Data Fig. 7, bottom 
right) and was robust to methodological artefacts such as floor effects 
(Supplementary Notes E−G). Taken together, these results demonstrate 
relationships between mood drift and other important individual  
differences: depression risk, life happiness and reward sensitivity.

Impact on behaviour
Participants are less likely to gamble after rest periods. To investi-
gate whether mood drift’s effects extend to behaviours beyond sub-
jective mood reports, we examined the impact of rest and mood drift 
on behaviour in the gambling tasks. Past research has shown that a 
participant’s choice between a certain outcome and a more exciting 
but uncertain gamble is affected by mood as induced by unexpected 
gifts41,42, music43 and feedback31. We asked whether mood drift would 
influence this behaviour in a similar way.

We observed that gambling (specifically positive closed-loop 
gambling, in which participants tended to receive positive RPEs) 
participants who had a preceding rest or visuomotor task block had 
significantly lower mood at gambling onset than those who did not 
(median 0.55 versus 0.66, IQR 0.28 versus 0.31, two-sided Wilcoxon 
rank-sum test, W722 = 2.08, P = 0.0377) (Fig. 5, top). This effect was no 
longer significant at the next mood rating, which took place around 
trial 4 of gambling. We therefore examined gambling behaviour in these 
first four trials. Those who had experienced either a short (350–450 s) 
or long (500–700 s) opening rest period were significantly less likely 
to gamble than those who had not (median 3, IQR 2 for both short and 
long rest, two-sided Wilcoxon rank-sum test, no rest versus short rest: 
W469 = 4.85, P < 0.001; no rest versus long rest: W344 = 4.79, P < 0.001; 
both <0.05/3 controlling for multiple comparisons; Fig. 5, bottom). 
However, we did not find evidence of a difference between the long 
and short rest groups (two-sided W629 = 0.52, P = 0.603). Trial-wise 
gambling behaviour differences between rest and no-rest groups are 
most pronounced in the first four trials, much like the differences 
observed in mood (Fig. 5, middle). However, no significant correlation 
was observed between an individual’s mood drift parameter during the 
preceding rest block and the number of times they chose to gamble in 
the first four trials (rs = 0.0317, P = 0.427, two-sided).

10
All online participants (n = 886), LME
Confirmatory mobile app participants (n = 20,877), LME

Pe
rc

en
ta

ge
 o

f p
ar

tic
ip

an
ts

LME slope parameter (%mood min−1)

LME mood slope parameter histograms

8 *

6

4

2

0
–10.0 –7.5 –5.0 –2.5 0 2.5 5.0 7.5 10.0

Fig. 3 | Individual subject LME slope parameters for online participants 
(blue) and mobile app participants (orange). The online participants had 
slopes below zero on average (mean ± SE −1.89 ± 0.185 %mood min−1, t864 = −10.3, 
P < 0.001), as did the mobile app participants (mean ± SE −0.881 ± 0.0613 
%mood min−1, t22,804 = −14.4, P < 0.001). Mood drift was significantly less negative 
in the mobile app participants (median −0.752, IQR 2.10 %mood min−1) than in the 
online participants (median −1.53, IQR 2.34 %mood min−1, two-sided Wilcoxon 
rank-sum test, W21,761 = −14.5, P < 0.001). Vertical lines represent group medians. 
Stars indicate P < 0.05.
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Relationship to boredom and thought content
We next examined whether the existing construct of boredom or MW 
could trivially explain mood drift. In a pre-registered (https://osf.io/
gt7a8) data collection and analysis, we examined the relationship 
between mood drift and these more established constructs at the state 
level, state change level and trait level (Supplementary Notes L and M). 
Participants were randomized to a boredom, MW or Activities cohort 
(described previously) at the time of participation.

Mood Drift Over Time is weakly related to state boredom. We 
assessed whether mood drift could be explained by boredom. Partici-
pants completed a rest block with interspersed mood ratings, plus a 
state boredom questionnaire (the Multidimensional State Boredom 
Scale’s short form, MSBS-SF)44 afterwards (cohort BoredomAfterOnly, 
n = 150), or before and afterwards (cohort BoredomBeforeAndAfter, 
n = 150), and a trait-boredom questionnaire (the short boredom prone-
ness scale, SBPS)45.

In our LME model of mood, we added a factor for final state bore-
dom (that is, at the end of the rest block). We then compared this base-
line model with one that further added the interaction between final 
boredom and time. The difference represents the ability of boredom 
to account for mood drift. While the model fit improved, the added 
within-individual variance explained by the addition of this new interac-
tion term was very small (ff 22 = 0.00578). The change in state boredom 
across the rest block produced similar results (ff 22 = 0.0111).

Including time’s interaction with trait boredom in the model did 
not explain significant additional variance in mood (likelihood ratio 
test: χ2(1, N = 16) = 0.0253, P = 0.874).

Mood Drift Over Time is weakly related to thought content. We 
also assessed whether mood drift could be explained by the con-
tent of ongoing thought, including the task-unrelated thought, 
stimulus-independent thought and spontaneity often considered in 
definitions of MW46. We note that such content-based definitions of 
MW are controversial and do not capture the dynamics-based defini-
tion espoused by some researchers47,48. New participants completed 
a rest block with interspersed mood ratings, plus a Multidimensional 

Experience Sampling (MDES) questionnaire49) afterwards (cohort 
MwAfterOnly, n = 150), or before and afterwards (cohort MwBefore-
AndAfter, n = 150), and a trait-MW questionnaire (the mind-wandering 
questionnaire (MWQ)50). MDES results produce 13 principal compo-
nents that attempt to capture the content of ongoing thought. We 
investigated how well this complete collection of components explains 
within-individual mood variance.

In our LME model of mood, we added 13 factors for ‘final’ MDES 
components (that is, at the end of the rest block). We then compared 
this baseline model with one that further added the 13 interactions 
between these final MDES components and time. The difference repre-
sents the ability of MDES components to account for mood drift. While 
the model fit improved, the within-individual variance explained by the 
addition of these new interaction terms was small (ff 22 = 0.0227). The 
change in MDES components across the rest block produced similar 
results (ff 22 = 0.0380).

Including time’s interaction with trait MW in the model did not 
explain significant additional variance in mood (χ2(1, N = 16) = 0.305, 
P = 0.581).

Discussion
In this study, we describe the discovery of a highly replicable and 
relatively large effect that we call Mood Drift Over Time: the average 
participant’s mood gradually declined with time as they completed 
simple tasks or rest periods. Mood’s sensitivity to the passage of time is a 
long-intuited phenomenon that is widely acknowledged in literature51–53 
and philosophy54–56. Our results provide robust empirical evidence for 
this phenomenon and reveal its temporal structure, its variability across 
individuals and its level of stability. These results call into question the 
long-held constant affective background assumption in behavioural 
and affective science.

The mechanism that enables mood to be sensitive to the passage 
of time is not yet known. One possibility is that humans store expecta-
tions about the rate of rewards and punishments in the environment 
and that prolonged periods of monotony violate such expectations. 
Such a view aligns with the recently articulated theoretical progress in 
integrating opportunity cost across time to guide behaviour21. Lower 
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mood could function as an estimate of that opportunity cost, making 
mood drift an adaptive signal that informs decisions to exploit (stay 
on task) or explore (switch task)20.

Supporting this reward/cost-based interpretation of our findings 
is our observation that depressed participants showed less negative 
mood drift. This would at first seem paradoxical since phenomena 
such as boredom have traditionally been linked to melancholia and 
depression (for example, by Schopenhaur57 and Kierkergaard58). Yet it 
has been argued cogently59 that such a view conflates negative affect 
as a trait (for example, proneness to boredom) with negative affect as 
a state (a momentary experience). As valuation of reward is thought to 
be reduced in depression37,38, it is possible that misalignment with one’s 
goals and violation of reward expectations—and resultant downward 
mood drift—will be less pronounced in depression. This interpretation 
is supported by our finding that mood drift is less pronounced in those 
with lower reward sensitivity, and that the relationship between reward 
sensitivity and mood drift was moderated by depression risk (Fig. 4). 
It is tempting to speculate that reduced mood drift could contribute 
to reduced motivation for action or environmental change in those 
with depression.

We found that mood declined during rest and tasks (including 
a mobile app more engaging than most experiments) but not freely 
chosen activities. This suggests that researchers are subjecting their 
participants to an unnatural stressor in their experiments without 
accounting for it in their analyses or interpretations. Changes in mood 
on the scale of tens of minutes prevent these longer blocks of time from 
being truly interchangeable. This means that variations in experimen-
tal procedures that might seem inconsequential could still introduce 
confounds.

For example, let us consider a large collaborative study that is 
based on multisite imaging data collection, such as ENIGMA60. In this 
dataset, centres vary in the duration of the resting-state functional 
magnetic resonance imaging (fMRI) scan and whether it takes place at 
the start or end of the scan session61. This could lead to high variability 
between sites simply because patients at sites with longer or later scans 
spent more of the scan in a bad mood. At best, the neural correlates of 
that decreased mood will be uncorrelated with the effect of interest, 
increasing noise and reducing statistical power. At worst, they could 
be mistaken for neural correlates of a certain genotype that is more 
common in the country where the longer scans took place. (We do not 
imply that mood drift lowers reliability in resting-state fMRI62–64; we 
simply point out its role as a potential confound when drawing infer-
ences about mood and brain states during/after rest.)

In this paper, we introduce the new term Mood Drift Over Time 
for the following reasons. First, the phenomenon is highly replicable; 
second, it is of considerable effect size; third, it is relevant to both 
everyday situations and to scientific experiments; fourth, mood drift 
does not seem to be captured by existing terms such as boredom or 
MW. We employ the term mood drift in the spirit of describing a mental 
phenomenon65–67, as a first step before explaining or categorizing it. 
It is possible that mechanisms for mood drift are reward sensitivity 
and opportunity cost, yet the subjective experience and its influence 
on the outcome of experimental studies seem to require the separate 
term that we have introduced.

The distinction between mood drift and boredom requires spe-
cial consideration due to their apparent similarities. State boredom 
assessed using the MSBS-SF44 accounted for modest variance beyond 
other factors. Of course, the MSBS is only one (relatively well estab-
lished) way of measuring boredom; moreover, there is debate about 
the very conceptualization of boredom and its heterogeneity22,59,68. 
Therefore, we cannot conclude purely from these results that boredom 
is not driving mood drift. Future work might instead ask participants to 
directly report their boredom69, enabling more frequent assessment 
of boredom as an emotion70.

Importantly, we show that accounting for time using a linear term 
significantly improves the fit of a computational model of mood. A 
linear term may be unrealistic as we expect that, on a bounded mood 
scale, the effect will eventually saturate. However, we propose that, 
until alternative models have been established, the linear term may 
be a good-enough way to account for the substantial effects of mood 
drift on the timescale of most experiments.

Our study has several strengths, including adherence to good data 
analysis practices such as pre-registration and replication, the addition 
of a longitudinal design to test reliability and the use of rigorous com-
putational modelling (including train–test splits and regularization). 
Our study demonstrated the effect in adolescents as well as adults and 
showed how the effect differs in people with varying reward sensitivity 
and depression risk. We used control experiments to eliminate poten-
tial confounds and test alternative explanations (Supplementary Notes 
C–G). Yet our study should also be seen in light of some shortcomings.

First, this study uses self-reported momentary mood ratings 
as in previous studies with similar methodology2,3. Such ratings can 
be criticized as being subjective and difficult to interpret. However, 
mood is a well-established construct of central importance to affec-
tive science. Its definition as a long-duration affective state that is not 
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immediately responsive to stimuli71,72 makes it central to the study of 
mood disorders defined by long-term affect73. Mood is distinct from 
emotion, in part, by being less temporally responsive74–76. Mood’s links 
to long-term context makes it the more useful construct to describe 
gradual changes in affect.

Despite its subjectivity, self-report remains the gold standard  
for the measurement of mood and emotion76–78. It is widely used in  
clinical79, epidemiological80 and psychological research (including 
ecological momentary assessment81). Other physiological ‘markers’ of 
affect are typically benchmarked against these self-reports. And evi-
dence suggests that these candidates lack the reliability of self-reports: 
different emotions cannot be distinguished by their autonomic  
nervous system signatures82, facial expressions83,84 or neural activity85. 
In our experiments, initial mood ratings showed strong association 
with trait mood ratings, underscoring their psychometric validity 
(Extended Data Fig. 8). Our study cannot conclusively determine mood 
drift’s behavioural consequences. On average, rest induces downward 
mood drift (Fig. 2) and decreases gambling behaviour (Fig. 5). However, 
a significant correlation between individuals’ mood drift and gambling 
behaviour was not observed. Our results are not able to discern whether 
the change in behaviour is directly linked to mood drift or to some other 
consequence of rest.

Our study’s limited set of tasks, all of which induced mood drift, 
makes it difficult to discern the phenomenon’s key contributing factors.  
We chose to focus on a category that is extremely common in neuro-
science: long, neutral, low-stimulation tasks. Most researchers would 
see these qualities as unobjectionable or even desirable. We hope that 
the results of this study will lead researchers to re-examine this idea in 
their own research.

Methods
Participants
Online adult participants. Online adult participants were recruited 
using Amazon Mechanical Turk (Amazon.com, Inc., Seattle, WA), a 
service that allows a person needing work done (a ‘requester’) to pay 
other people (‘workers’) to do computerized tasks (‘jobs’) from home86. 
Requesters can use ‘qualifications’ to require certain demographic 
or performance criteria in their participants. We required that our 
participants be adults living in the United States, that they have com-
pleted over 5,000 jobs for other requesters, and that over 97% of their 
jobs have been satisfactory to the requester. We also required that 
participants had not performed any of our tasks (which were relatively 
similar to the ones in this study) before.

Every online participant received the same written instructions 
and provided informed consent on a web page where they were 
required to click ‘I Agree’ to participate. As we did not obtain informa-
tion by direct intervention or interaction with the participants and 
did not obtain any personally identifiable private information, our 
MTurk studies were classified as not human subjects research and 
were determined to be exempt from institutional review board review 
by the National Institutes of Health (NIH) Office of Human Subjects 
Research Protections. The consent process and task/survey specifics 
were approved by the Office of Human Subjects Research Protections. 
For data to be included in the final analyses, participants were required 
to complete both a task and a survey (described below). Participants 
submitted a six-to-ten-digit code revealed at the end of each one to 
prove that they had completed it. Both the task and survey had to be 
completed in a 90 min period starting when they accepted the job on 
Amazon Mechanical Turk.

The consent form included a description of the tasks they were 
about to perform, but cohorts were blinded to the specific cohort to 
which they had been assigned. Most cohorts were collected in series, 
but some were randomized to a cohort at the time of participation 
(we have specified these in Methods or Results). In the initial cohorts, 
no statistical methods were used to pre-determine sample sizes, but 

our cohort sample sizes are similar to those reported in ref. 2, and our 
combined cohorts are much larger.

A total of 914 participants completed the task online. Some data 
files did not save properly due to technical difficulties or the partici-
pant closing the task window before being asked to do so. Forty-four 
participants whose task or survey data did not save were excluded. 
Of the 870 remaining Mechanical Turk participants, 390 were female 
(44.8%). Participants had a mean age of 37.6 years (range 19–74 years).

A subset of the online adult participants were invited to return 
the following day to repeat the same task and survey a second time. 
Of the 66 individuals who completed both the task and the survey 
on the first day, 53 (80.3%) completed the task and survey on the sec-
ond day. Gambling trials were randomized independently so that the 
subject was not seeing the exact same trials both times. Participants 
could complete the second task and survey any time in the following 
3 days, but the task and survey had to be done together in the same  
90 min period.

Similarly, a different cohort was invited to return a week after 
their first run to repeat the same task and survey. These participants 
could complete the second task and survey any time in the following 
6 days, but the task and survey had to be done together in the same 
90 min period. This cohort was then invited to complete the same 
task and survey a third time, 2 weeks after their first run. A total of 
196 individuals completed the task and survey the first week. Among 
these, 163 (83.2%) of these completed the task and survey the second  
week and 158 (80.6%) completed the task and survey the third week. 
In total, 149 (76.0%) individuals completed the task and survey in  
all 3 weeks.

Online adolescent participants. Adolescent participants recruited 
in person at the National Institute of Mental Health were also invited 
to participate by completing a similar task on their computer at 
home. These participants completed a different set of question-
naires, developed for adolescents, about their mental health. Every 
participant received the same scripted instructions and provided 
informed consent to a protocol approved by the NIH institutional  
review board.

There were 230 adolescents enroled in the NIMH depression char-
acterization study who were offered to complete tasks for this study. 
Among these, 129 agreed, a participation rate of 56.1%. Ten adolescents 
who had not completed all three questionnaires were excluded from the 
results, as were three participants who declined to allow their data to be 
shared openly. Of the remaining 116 adolescent participants, 77 were 
female (66.4%). They had a mean age of 16.3 years (range 12–19 years). 
Fifty-six participants (48.2%) had been diagnosed with major depres-
sive disorder (MDD) by a clinician at the NIH, and 4 were determined to 
have subclinical MDD (3.4%). Participants had a mean depression score 
of MFQ of 6.5 (±5.5 standard deviation (s.d.)) and a mean anxiety score 
of SCARED of 2.2 (±3.0 s.d.).

To assess the stability of findings in this population, the in-person 
adolescent participants were invited to return each week to complete 
the same task again, up to three times. Eighty-two (70.6%) individuals 
completed the task a week later, and 4 (3.4%) completed the task a third 
time the following week. The analyses presented in this paper use only 
the first run from this cohort.

Boredom, MW and Activities participants. In response to reviewer 
comments, a pre-registered follow-up analysis included five new 
cohorts of MTurk participants who received similar tasks that also 
included mood ratings, rest periods and the gambling game. This group 
was recruited to investigate the impacts of boredom and MW on mood 
changes, so they completed surveys about these traits in addition to 
the demographics, CES-D and SHAPS questions. Participants were 
randomized to one of these five ‘follow-up cohorts’, summarized in 
Extended Data Table 1:
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•	 BoredomBeforeAndAfter (n = 150), who received a boredom 
state questionnaire both before and after a 7 min rest period 
with 15 s of rest between mood ratings.

•	 BoredomAfterOnly (n = 150), who received a boredom state 
questionnaire only after a 7 min rest period with 15 s of rest 
between mood ratings.

•	 MwBeforeAndAfter (n = 150), who received an MDES question-
naire both before and after a 7 min rest period with 15 s of rest 
between mood ratings.

•	 MwAfterOnly (n = 150), who received an MDES questionnaire only 
after a 7 min rest period with 15 s of rest between mood ratings.

•	 Activities (n = 450), who received instructions to leave the task 
for 7 min and perform activities of their choice, completing 
mood ratings just before and after this period.

After the rest periods described above, each group completed a 
block of negative closed-loop gambling trials and a block of positive 
closed-loop gambling trials (as described in the ‘Gambling Blocks’ sec-
tion). Details of the cohorts’ tasks are found in the following sections. 
A full description of the pre-registered tasks and analyses can be found 
at https://osf.io/gt7a8, registered on 18 November 2021. A total of 1,143 
participants completed these tasks online. Ninety-three participants 
were excluded because their task or survey data was incomplete or 
did not save, because they completed the task more than once despite 
instructions to the contrary, or because they failed to answer one or 
more ‘catch’ questions correctly on the survey. Of the 1,050 remaining 
participants, 463 were female (44.1%). Participants had a mean age of 
39.3 years (range 20–80 years).

The above sample sizes were selected using power calculations 
described in detail in the pre-registration. For the scale validation 
experiments, a sample size of 150 in each group with an α of 0.01 gives 
99.02 power to detect a medium effect (d = 0.5) and 83.04% power to 
detect an intermediate effect (d = 0.3) assuming the effect truly is null 
at a population level. Power for linear multiple regression tests were 
calculated in G*Power87. In the boredom and MW cohorts, samples of 
150 participants were selected to provide 80% power to detect a 7.99% 
increase in variance explained with the inclusion of a single parameter 
(α = 0.01, 20 total predictors) and a 95% power to detect a 12.18% change 
in variance explained. In analyses using a pair of cohorts, 300 partici-
pants gives 80% power to detect a 3.93% increase in variance explained 
and a 95% power to detect a 6.01% increase in variance explained. An 
Activities cohort of 450 participants was chosen to provide 80% power 
to detect a difference between the Activities and MTurk cohorts of 
Cohen’s d of 0.2, and it also provides 80% power to detect a decrease 
in mood in the Activities cohort of Cohen’s d of 0.15.

Mobile app participants. Gambling behaviour and mood rating data 
were collected from a mobile app called ‘The Great Brain Experiment’, 
described in ref. 3. The Research Ethics Committee of University College 
London approved the study. When participants opened the app for the 
first time, they gave informed consent by reading a screen of informa-
tion about the research and clicking ‘I Agree’. They then rated their life 
satisfaction as an integer between 0 (not at all) and 10 (completely). 
Any time they used the app after this, participants could then choose 
between several games, including one called ‘What makes me happy?’ 
that was used in this research. We used a subset of 26,896 people, pri-
marily from the United States and the UK, in our analyses. The median 
life satisfaction of the included participants, which will be used as a 
proxy for depression risk in this cohort, was 7/10. Age for this cohort 
was provided in bands. These are the bands and number of individuals 
in each band in the subset of data used in our analysis: 18–24 (6,500), 
25–29 (4,522), 30–39 (7,190), 40–49 (4,829), 50–59 (2,403), 60–69 
(1,158) and 70+ (294). In total, 13,168 were female (49.0%).

Mobile app participants were randomly split into an exploratory 
cohort of 5,000 participants and a confirmatory cohort of all remaining 

participants. All analyses and hyperparameters involving mobile app 
participants were optimized using only the exploratory cohort, then 
tested on the confirmatory cohort. These confirmatory analyses were 
pre-registered on the Open Science Framework (https://osf.io/paqf6, 
registered on 29 January 2021).

In the LME model described below, we made an effort to exclude 
participants who were outliers in the time they took to complete the 
task. Such outliers would have a large effect on the LME model’s mood 
slope term, where non-zero slopes would lead to large errors in these 
outlier participants. Outlier completion times also suggest that the 
participant was not fully paying attention to the task, either by respond-
ing without thinking or leaving the app for an extended period. Mobile 
app participants with an average task completion time that was less 
than Q1 − 1.5 × IQR or greater than Q3 + 1.5 × IQR (where Q1 is the 25th 
percentile, Q3 is the 75th percentile and IQR = Q3 − Q1) were excluded 
from this LME analysis. In total, 4.65% of participants were excluded on 
the basis of these criteria, leaving n = 20,877 mobile app participants.

Task and survey
The online tasks were created using PsychoPy3 (v2020.1.2) and 
uploaded to the task hosting site Pavlovia for distribution to partici-
pants. Pavlovia used the javascript package PsychoJS to display tasks 
in the web browser. Each task used the latest version of Pavlovia and 
PsychoJS available at the time of data collection. A list of all cohorts 
collected can be seen in Extended Data Table 1.

Mood ratings. The task given to online participants is outlined in  
Fig. 1a. Periodically during all tasks, participants were asked to rate 
their mood. Participants first saw the question ‘How happy are you at 
the moment?’ for 3 s. Then a slider appeared below the question, with 
a scale whose ends were labelled ‘unhappy’ and ‘happy’. A red circle 
indicated the current slider position, and it started in the middle for 
each rating. Participants could press and hold the left and right arrow 
keys to move the slider, then spacebar to lock in their response. If the 
spacebar was not pressed in 4.5 s, the current slider position was used 
as their mood rating.

As part of the instructions at the start of each run, the participant 
was asked to rate their overall ‘life happiness’ in a similar (but slightly 
slower) rating. In this case, participants first saw the question ‘Taken 
all together, how happy are you with your life these days?’ for 4 s. The 
slider then appeared, and the participant had 6.5 s to respond.

In one alternative version of the task, participants were asked to 
rate their mood with a single keypress instead of a slider. They could 
press a key 1–9 to indicate their current mood, where 1 indicated ‘very 
unhappy’ and 9 indicated ‘very happy’. This alternative version was used 
to investigate the possibility that mood effects could be an artefact of 
the rating method, where participants’ ratings converged to the middle 
because this rating required the least effort.

Rest blocks. In some blocks, participants were asked to simply rest 
in between mood ratings. These rest periods consisted of a central 
fixation cross presented on the screen. The duration of the rest period 
was 15 s for most versions of the experiment. For some versions, this 
duration was made longer or shorter to disentangle the impacts of rat-
ing frequency and elapsed time on mood, investigating the possibility 
that the mood ratings themselves were aversive.

Thought probes and activities questions. Follow-up versions of the 
task included thought probes about state boredom or the emotional 
valence of ongoing thought (including MW). These groups received 
rest blocks as described above, but with additional questions just 
before and/or after it.

Two cohorts were collected to quantify the relationship between 
mood drift and boredom. Each received a rest period with mood 
ratings 20 s apart, followed by the MSBS-SF, an eight-item scale of 
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state boredom44. Participants rated statements like ‘I feel bored’ on 
a seven-point Likert scale from 1 (‘Strongly Disagree’) to 7 (‘Strongly 
Agree’). Their level of boredom was quantified as the sum of their 
ratings on the eight questions. The first (cohort BoredomBeforeAn-
dAfter, n = 150) completed the MSBS-SF both before and after the rest 
period. The second (cohort BoredomAfterOnly, n = 150) completed 
the MSBS-SF only after the rest period.

Two other cohorts were collected to quantify the relationship 
between mood drift and the emotional valence of ongoing thought 
(including MW). Each participant in the two MW cohorts received a 
rest period with mood ratings 20 s apart, followed by a 13-item MDES 
as described by Turnbull et al.49. Participants were asked to respond to 
a set of questions by clicking on a continuous slider. Most questions, 
like ‘my thoughts were focused on the task I was performing’, were rated 
from ‘not at all’ (scored as −0.5) to ‘completely’ (scored as 0.5). The first 
(cohort MwBeforeAndAfter, n = 150) completed the MDES only after 
the rest period. The second (cohort MwAfterOnly, n = 150) completed 
the MDES only after the rest period.

As described by Ho et al.88, we used principal components analysis 
(PCA) to quantify the affective valence of thought at each administra-
tion of MDES. We first compiled the MDES responses of all participants 
in the MwAfterOnly group into a matrix with 13 (the number of items in 
each administration) columns and 450 (the number of administrations) 
rows. We then used scikit-learn’s PCA function to find 13 orthogonal 
dimensions explaining the MDES variance. The use of PCA orthogonal-
izes the MDES responses, which is desirable for their use as explanatory 
variables in an LME35.

For a pre-registered analysis, we focused on the emotional content 
of ongoing thought (this approach was later abandoned in favour of 
examining the collective predictive power of all 13 MDES components, 
Supplementary Notes L and M). By examining the component matrix, 
we identified the component that loaded most strongly onto the ‘emo-
tion’ item of the MDES (in which they reported their thoughts as being 
negative or positive). The ‘emotion dimension’ of each MDES (in both 
MW cohorts)) was then quantified as the amplitude of this component, 
calculated by applying this pre-learned PCA transformation to the data 
and extracting the corresponding column. The sign of PCA components 
is not meaningful, so we arbitrarily chose that increased emotion 
dimension would represent more negative thoughts.

Another follow-up task investigated the impact on mood of a break 
period where participants were released to do whatever they wanted. 
Just before this break period, an alarm sound was played on repeat, 
and participants were asked to increase the volume on their computer 
until they could hear the alarm clearly. Participants were informed that 
they would have 7 min to put the task aside and do something else but 
should be ready to come back when the alarm sounded at the end. 
After these instructions and before the break, they rated their mood. 
During the break, the task window displayed a message saying ‘this is 
the break. An alarm will sound when the break is over’. After the alarm 
sounded and participants returned, they rated their mood again. They 
were then asked 27 questions about how much of the break they spent 
doing various activities. They were asked to rate each by clicking on a 
five-point Likert scale with options labelled ‘not at all’ (scored at 0%), 
‘a little’ (scored at 25%), ‘about half the time’ (scored at 50%), ‘a lot’ 
(scored at 75%) or ‘the whole time’ (scored at 100%). These scores were 
used to roughly describe the most common activities performed by 
the participants during the break.

Participants were randomized to one of the follow-up cohorts 
described in this section at the time of participation.

Task blocks. In some blocks, participants completed a simple visuomo-
tor task. In this task, the fixation cross moved back and forth across the 
screen in a sine wave pattern (peak–peak amplitude: 1× screen height, 
period: 4 s). Participants were asked to press the spacebar at the exact 
moment when the cross was in the centre of the screen (as denoted by 

a small dot). In some blocks, they received feedback on their perfor-
mance: each time they responded, the white cross turned green for 
400 ms if the spacebar was pressed within the middle 40% of the sine 
wave’s position amplitude (that is, less than 0.262 s before or after the 
actual centre crossing).

Gambling blocks. In each trial of the gambling task, participants saw 
a central fixation cross for 2 s. Three boxes with numbers in them then 
appeared. Two boxes on the right side of the screen indicated the possi-
ble point values they could receive if they chose to gamble (the ‘win’ and 
‘loss’ values). On the left side, a single number indicated the points they 
would receive if they chose not to gamble (the ‘certain’ value). Partici-
pants had 3 s to press the right or left arrow key to indicate whether they 
wanted to gamble or not. If no choice was made, gambling was chosen 
by default. After making their choice, the option(s) not chosen would 
disappear. If they chose to gamble, both possible gambling outcomes 
appeared for 4 s, then the actual outcome appeared for 1 s. If they chose 
not to gamble, the certain outcome appeared for 5 s. The locations (top/
bottom) of the higher and lower gambling options were randomized.

The gambling outcome values were calculated according to several 
rules depending on the version of the experiment. In each version, the 
‘base’ value was a random value between −4 and 4 points. The other 
value was this base value plus a positive or negative RPE. If they chose to 
gamble, participants would always receive the base value + RPE option. 
To encourage gambling, the ‘certain’ value was set to (win + 2 × loss)/3, 
or 1/3 of the way from the loss value to the win value. (Note that this 
rule was the same for every subject and was therefore unlikely to drive 
individual differences in gambling behaviour.)

In the ‘random’ version, the RPE was a random value with uniform 
distribution between −5.0 and 5.0. RPE magnitudes of less than 0.03 
were increased to 0.03. If three trials in a row happened to have the 
same outcome (win or loss), the next trial was forced to have the other 
outcome.

In the ‘closed-loop’ version, RPEs were calculated on the basis of 
the difference between a participant’s mood and a ‘target mood’ of 0 or 
1. Some blocks of trials were ‘positive’ blocks in which the participant 
had a 70% chance of winning on each trial (‘positive congruent trials’) 
and a 30% chance of losing (‘positive incongruent trials’). Other blocks 
were ‘negative’ blocks in which the participant had a 70% chance of 
losing on each trial (‘negative congruent trials’) and a 30% chance of 
winning (‘negative incongruent trials’). If there had been three incon-
gruent trials in a row, the next trial was forced to be congruent. The RPE 
was calculated as in a Proportional-Integral controller: a weighted sum 
of the current difference and the integral across all such differences 
reported so far in the block. The weightings were different for congru-
ent and incongruent trials. Specifically, the RPE was set to:

RPE(t) =

⎧
⎪
⎨
⎪
⎩

14 × (M(t − 1) −Mtarget) +
t−1
∑
j=1
(M(j) −Mtarget) congruent trial

−3.5 × (M(t − 1) −Mtarget) +
t−1
∑
j=1
(M(j) −Mtarget)/12 incongruent trial

where t = 1, 2, . . . , n is the trial index relative to the start of the block, 
M(t) is the mood reported after trial t, and Mtarget is the target mood 
for the current block. RPEs with a magnitude of less than 0.03 were 
assigned a magnitude of 0.03.

During gambling blocks, mood ratings occurred after every two 
or three trials (on average, one rating every 2.4 trials). Every subject 
received mood ratings after the same set of trials.

At the end of the task, participants were presented with their 
overall point total. These point totals were translated into a cash bonus 
of $1–6 depending on their performance. Bonus cut-offs were deter-
mined on the basis of simulations such that any value 1–6 was possible 
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to achieve, but a typical subject gambling at every opportunity could 
be expected to receive approximately $3. Upon payment, participants 
received $8 for their participation (this was later increased to $10) plus 
this bonus.

Survey. After performing the task, online adult participants were 
asked to complete a series of questionnaires. In the demographics 
portion, they were asked for their age, gender and location (city and 
state). They were also asked to indicate their overall status using the 
MacArthur Scale of Subjective Social Status89. Shown a ten-rung lad-
der, participants clicked on the rung that represented their overall 
status relative to others in the United States. This scale is a widely 
used indicator of subjective social status, and in certain cases, it has 
been shown to indicate health status better than objective measures 
of socio-economic status90.

After the demographics portion, online adult participants com-
pleted questionnaires including the Center for Epidemiologic Studies 
Depression Scale (CES-D), a 20-item scale of depressive symptoms91. 
They also completed the Snaith–Hamilton Pleasure Scale (SHAPS), a 
14-item scale of hedonic capacity92.

In-person adolescent participants completed a different set of 
questionnaires, selected to be age appropriate and maintain consist-
ency with other ongoing research projects. These questionnaires 
included the Short Child Self-Report Mood and Feelings Questionnaire 
(MFQ), a 13-item scale of how the participant has been feeling and 
acting recently79,93. They also included the Screen for Child Anxiety 
Related Emotional Disorders (SCARED), a 41-item scale of childhood 
anxiety94. These questionnaires were completed before the subject 
began completing the online tasks described above.

Participants recruited for follow-up investigations of boredom, 
MW, and free time activities also completed the SBPS, an eight-item 
scale of an individual’s proneness to boredom in everyday life45. They 
also completed the five-item MWQ, which quantifies a person’s prone-
ness to MW in everyday life50. The SBPS and MWQ were used to quantify 
trait-level boredom and MW, respectively.

Mobile app. The task given to mobile app participants is outlined in  
Fig. 1b. Mobile app participants completed 30 trials of a gambling game. 
In each trial, participants chose between a certain option and a gamble, 
represented as a spinner in a circle with two possible outcomes. If the 
participant chose to gamble, the spinner rotated for approximately 
5 s before coming to rest on one of the two outcomes. Participants 
were equally likely to win or lose if they chose to gamble. The points 
were added to or subtracted from the participant’s total during an 
approximately 2 s inter-trial interval before the game advanced to the 
next trial. After every two to three trials (12 times per play), the partici-
pant rated their mood. They were presented with the question, ‘How 
happy are you right now?’. A slider was presented with a range from 
‘very unhappy’ to ‘very happy’. The participant could select a value by 
moving their finger on the slider and tapping ‘Continue’. No limit was 
placed on their reaction times.

Each participant received 11 gain trials (with gambles between one 
positive outcome and one zero), 11 loss trials (one negative outcome 
and one zero) and 8 mixed trials (one positive and one negative out-
come). The possible gambling outcomes were randomly drawn from 
a list of 60 gain trials, 60 loss trials and 30 mixed trials. Participants 
played one of two versions of the app, between which the only differ-
ence was the precise win, loss and certain amounts in these lists. The 
amounts in the first version are described in detail in the supplementary 
material of ref. 3. In the second version, gain trials had three certain 
amounts (35, 45 and 55) and 15 gamble amounts (59, 66, 72, 79, 85, 92, 
98, 105, 111, 118, 124, 131, 137, 144 and 150). As in the first version, the 
set of loss trials was identical to the gain trials except that the values 
were negative. Mixed trials has three prospective gains (40, 44 and 75) 
and ten prospective losses (−10, −19, −28, −37, −46, −54, −63, −72, −81 

and −90). Both versions are described further in ref. 33. The median 
participant played the game for approximately 5 min.

After playing the game, participants saw their score plotted 
against those of other players, and they were told if their score was 
a ‘new record’ for them. They could then choose to play again and try 
to improve their score. We reasoned that introducing the notion of a 
‘new record’ would significantly change participants’ motivations and 
behaviour on subsequent runs, and we therefore limited our analysis 
to the first run from each participant.

LME model
Analyses and statistics were performed using custom scripts written in 
Python 3. Participants’ momentary subjective mood ratings were fit-
ted with a LME model with rating time as a covariate using the Pymer4 
software package (http://eshinjolly.com/pymer4/)95. Rating times 
were converted to minutes to satisfy the algorithm’s convergence cri-
teria while maintaining interpretability. This method resulted in each 
participant’s data being modelled by a slope and intercept parameter 
such that:

M(t) = M0 + βT × T(t) (1)

where M0 is the estimated mood at block onset (intercept), βT is the 
estimated change in mood per minute (slope) and T(t) is the time in 
minutes from the start of the block. The LME modelling algorithm 
also produced a group-level slope and intercept term as well as CIs 
and statistics testing against the null hypothesis that the true slope 
or intercept was zero.

The first block of the first run for all online adult and in-person 
adolescent cohorts experiencing rest or random gambling first were 
fitted together in a single model, with factors:

Mood ∼ 1 + Time × (isMale +meanIRIOver20 + totalWinnings+

meanRPE + fracRiskScore + isAge0to16 + isAge16to18 + isAge40to100)

+(Time|Subject)
(2)

isMale is 1 if the participant reported their gender as ‘male’, 0 otherwise. 
meanIRIOver20 is the mean inter-rating interval across the block(s) 
of interest (in seconds) minus 20 (a round number near the mean). 
totalWinnings is the total points won by the participant in the block(s). 
meanRPE is the mean RPE across the block(s). totalWinnings and mean-
RPE will be zero for participants who were experiencing rest instead of 
gambling. fracRiskScore is the participant’s clinical depression risk 
score divided by a clinical cut-off: that is, their MFQ score divided by 
12 or their CES-D score divided by 16.

While the bounded mood scale prevents the error term of our 
mood models from being truly Gaussian, LMEs are typically robust to 
such non-Gaussian distributions35.

For reliability analyses, the first block of each run was modelled 
separately for each cohort/run with the same model shown above. An 
intraclass correlation coefficient quantifying absolute agreement 
(ICC(2,1)) between the runs of each cohort, was calculated using R’s 
‘psych’ package, accessed through the Python wrapper package rpy2.

To measure the psychometric validity of the subjective momentary 
mood ratings, we correlated the initial mood (or ‘Intercept’) param-
eter of this model with the life happiness ratings. The correlation was 
highly significant (rs = 0.548, P < 0.001, two-sided; Extended Data  
Fig. 8, left).

For comparisons with the online data, the same model was also 
employed in the initial analysis of the mobile app data.

LME model comparisons
To compare the ability of additional terms like depression risk and state 
boredom to explain variance in our model of mood, we employed an 
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analysis of variance (ANOVA) that compared two models: a reduced 
model with the factor but without its interaction with time, and an 
expanded model with both the factor and its interaction with time. All 
factors in equation (2) were included in both models (except in the case 
of depression risk, where the reduced model contained fracRiskScore 
but not its interaction with Time). We then used R’s ANOVA function to 
compare the expanded and reduced model. The degrees of freedom 
were quantified as the difference in the number of parameters in the 
two models.

To examine the impact of including a factor(s) on mood variance 
explained, we used the within-individual and between-individual vari-
ance explained (R2

1  and R2
2) as defined in refs. 96,97. This calculation 

required a null model including only an intercept and random effects, 
which we defined as:

Mood ∼ 1 + (1 + Time|Subject) (3)

The within-individual variance R2
1 of each model was defined as:

R2
1 = 1 −

σ2ε + σ2α
σ2ε0 + σ2α0

(4)

where σ2ε is the variance of the residuals of the model, σ2α is the variance 
of the random effects, σ2ε0 is the variance of the residuals of the null 
model, and σ2α0 is the variance of the random effects in the null model. 
The variance of the random effects in a model was calculated using R’s 
MuMIn library98, taking into account the correlation between model 
factors.

The between-individual variance R2
2 of each model was defined as:

R2
2 = 1 −

σ2ε + σ2α/k
σ2ε0 + σ2α0/k

(5)

where k was defined as the harmonic mean of the number of mood 
ratings being modelled for each participant.

As the depression risk, boredom and MW factors were constant 
for each subject, we focus primarily on the between-individual variance 
explained R2

2.
To compare the variance explained by the expanded and reduced 

models as a measure of effect size, we used Cohen’s ff 22 statistic39,40, 
defined as:

f 2 =
R2
AB − R2

A

1 − R2
AB

(6)

where R2
AB is the variance explained by the expanded model and R2

A is 
the variance explained by the reduced model. Separate ff 22 values can 
be calculated using the within-individual or between-individual vari-
ances. Using Cohen’s guidelines39, ff 22 ≥ 0.02 is considered a small 
effect, ff 22 ≥ 0.15 is considered a medium effect and ff 22 ≥ 0.35 is con-
sidered a large effect.

Computational model
When examining the effect of time on mood during random gam-
bling in the mobile app data, we next attempted to disentangle time’s 
effects from those of reward and expectation using a computational 
model. The model is based on one described in detail by ref. 2 that 
has been validated on behavioural data from a similar gambling task. 
The authors found that changes in momentary subjective mood were 
predicted accurately by a weighted combination of current and past 
rewards and RPEs in the task. Quantifying RPEs relies on subjective 
expectations that are formulated according to a ‘primacy model’, in 
which expected reward is more heavily influenced by early rewards 
than it is by recent ones.

The model described in ref. 2 was modified to include a coefficient 
βT that linearly relates time and mood. Our modified model is defined 
as follows:

M̂(t) = M0 + βA

t
∑
u=1

λt−uA(u) + βE

t
∑
u=1

λt−uE(u) + βTT(t) (7)

In the above equation, t = 1, 2, . . . n is the trial index, and M̂(t) is the 
estimated mood rating from trial t. M0 (the estimated mood at time 0), 
λ (an exponential discounting factor) and the βs are learned parameters 
of the model. A(t) is the actual outcome (in hundreds of points) of trial 
t, T(t) is the time of trial t in minutes and E(t) is the primacy model of 
the subject’s reward expectation in trial t, defined as:

E(t) = 1
t − 1

t−1
∑
u=1

A(u) (8)

If we remove the influence of time (that is, set our βT = 0), the full 
mood model in ref. 2 is equivalent to this one as long as its RPE coeffi-
cient is less than its expectation coefficient (that is, βKeren

R < βKeren
E ) and 

βKeren
E > 0, where βKeren

R  and βKeren
E  denote the values βR and βE defined in 

ref. 2). The values in our model can be derived from the values in theirs 
by setting βA = βKeren

R  and βE = βKeren
E − βKeren

R .
We used the PyTorch package99 on a GPU to fit 500 models simul-

taneously for each subject. βT was initialized to random values with 
distribution 𝒩𝒩(0, 1). βE and βA were initialized to random values with 
distribution Lognormal(0, 1) and capped to the interval [0, 10] on every 
iteration. M0 and λ were initialized to random values with normal dis-
tributions 𝒩𝒩(0, 1), then sigmoid-transformed (to facilitate optimization 
and conform to the interval [0, 1]) using the standard logistic 
function:

y = 1
1 + e−x (9)

At the end of 100,000 iterations, the model with the lowest sum 
of squared errors (SSE) (that is, ∑N

t=1 (M̂(t) −M(t))
2

) was selected. The 
time coefficient βT learned by the model could then be used as a meas-
ure of the influence of time on that participant’s mood, disentangled 
from the effects of rewards and RPEs.

End-to-end optimization was carried out using ADAM100 with a 
learning rate of α = 0.005. L2 penalty terms were placed on the β terms 
and added to the sum of squared errors. This meant that the objective 
function being minimized was:

L =
n
∑
t=1

(M̂(t) −M(t))
2
+ λEA × (βA

2 + βE
2) + λT × βT

2 (10)

The regularization hyperparameters λEA and λT were determined 
from a tuning step, in which the model was trained on the first ten 
mood ratings and tested on the last two in each of 5,000 exploratory 
participants. One model was trained with each combination of λEA and 
λT ranging from 10−4 to 103 in 20 steps (evenly spaced on a log scale). 
The testing loss (median across participants) across penalty terms 
was fitted to a third-degree polynomial using Skikit-Learn’s kernel 
ridge regression with regularization strength α = 10.0. The best-fitting 
regularization hyperparameters were defined as those that minimized 
this smoothed testing loss.

As in the LME, the bounded mood scale prevents the error term 
of our mood models from being truly Gaussian. Our computational 
model attempted to mitigate the effect of non-Gaussianity by capping 
mood predictions to the allowable range, initializing parameters to 
non-normal distributions, and restricting parameters to feasible ranges 
on every iteration.
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As in the online cohort’s LME model, the initial mood parameter 
M0 showed psychometric validity. It was significantly correlated with 
life happiness (rs = 0.362, P < 0.001; Extended Data Fig. 8, right).

Control model. To quantify the effect of including the time-related 
term, we fitted a control model without βT. This control model is defined 
as follows:

M̂(t) = M0 + βA

t
∑
u=1

λt−uA(u) + βE

t
∑
u=1

λt−uE(u) (11)

As in the primary model, the regularization hyperparameter λEA 
in this control model was tuned using the method described above.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data used in the manuscript have been made publicly available. 
Online participants’ data can be found on the Open Science Framework 
at https://osf.io/km69z/. Mobile app participants’ data can be found on 
Dryad at https://doi.org/10.5061/dryad.prr4xgxkk (ref. 101).

Code availability
The code for the task and survey is available on GitLab at https://gitlab.
pavlovia.org/mooddrift. Our data analysis software, as well as the 
means to create a Python environment that automatically installs it 
on a user’s machine, has been made available online at https://github.
com/djangraw/MoodDrift.
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Extended Data Fig. 1 | Mood rating frequency does not affect mood drift slope. Mean ± SE mood rating at each time in the 4 cohorts with 60 s, 30 s, 15 s, and 7.5 s of 
rest between mood ratings (cohorts 60sRestBetween, 30sRestBetween, 15sRestBetween, and 7.5sRestBetween, respectively). The magnitude of mood drift did not 
vary with the frequency of mood ratings.
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Extended Data Fig. 2 | Mood slope parameter distributions vary with 
analysis choice. Histogram of the LME mood slope parameters for the online 
cohort (blue) and the confirmatory mobile app cohort (orange), along with the 
computational model time sensitivity parameter for the confirmatory mobile 
app cohort (green). Mobile app participants with outlier task completion times 
were excluded from the LME analysis (see Methods). Note that the use of LME 
modeling to analyze the mobile app data significantly lowered the distribution of 

slopes compared to when the computational model was used (median = -0.752  
vs. -0.0408, IQR= 2.10 vs. 0.764 %mood min−1, 2-sided Wilcoxon rank-sum 
test, W42771 = -54.2, p<0.001), but the LME slopes from the mobile app were still 
significantly greater than those of the online cohort (median = -1.53 vs. -0.752, IQR 
= 2.34 vs. 2.1 %mood min−1, 2-sided Wilcoxon rank-sum test, W21761 = 14.5, p<0.001). 
Vertical lines represent group medians. Stars indicate p<0.05. P values were not 
corrected for multiple comparisons.
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Extended Data Fig. 3 | Sample fits of the computational model. Sample fits of the computational model for three random subjects in the confirmatory mobile app 
cohort. SSE = sum squared error, a measure of goodness of fit to the training data. In the top plots, the red bars are in units of the left-hand y axis, and the blue bars are in 
units of the right-hand y axis.
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Extended Data Fig. 4 | Histogram of computational model parameters. Histogram of computational model parameters across the 21,896 confirmatory mobile app 
subjects.
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Extended Data Fig. 5 | Mood drift stability over blocks, days, and weeks. 
Stability of LME coefficients estimating the initial mood (top) and slope of 
mood over time (bottom) for each participant across rest periods one block 
apart (left), 1 day apart (middle), and 2 weeks apart (right). ICC denotes the intra 

class correlation coefficient for each comparison. P values shown are one-sided 
(since ICC values are expected to be positive) with no correction for multiple 
comparisons.
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Extended Data Fig. 6 | Relationship between mood drift and depression risk. 
Relationship between mood drift and depression risk. (a) Mood ratings over time 
of online participants at risk of depression (defined as MFQ>12 or CES-D>16) 
vs. those not at risk for the 768 participants with at least 6 minutes of resting 
mood data (error bars are SEM). The dotted line represents the mean initial 
rating (mean of cohort means). (b) We fitted simple regressions of time versus 
mood within each individual and determined significance of the time term with 
Benjamini-Hochberg false-discovery rate correction (2-sided α = 0.5, p<0.05) 
to better understand the relationship between depression risk and the change 
in mood over time. Depression risk is operationalised as score on the CES-D or 

MFQ divided by the threshold for depression risk on each measure (16 and 12 
respectively). The line is a linear best fit, and the patch shows the 95% confidence 
interval of this fit. (c) Proportion of individuals with or without risk of depression 
(that is, depression risk >1 or <1) with positive (significantly greater than zero), 
non-significant (no evidence of a significant difference from zero), and negative 
(significantly less than 0) slopes of mood over time. 13 more individuals at risk 
of depression have a positive slope than the 35 expected based on the rates 
in individuals not at risk of depression, χ2(1,N=886)=14.57, p<0.001 (2-sided 
Pearson’s chi-squared statistic with no correction for multiple comparisons).

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01519-7

Extended Data Fig. 7 | Mood drift’s relation to other computational 
model parameters. Time sensitivity parameter βT vs. other parameters in the 
confirmatory mobile app cohort. Each dot is a participant (n=21,896). Each line  

is a linear best fit, and patches show the 95% confidence interval of this fit.  
rs denotes Spearman correlation coefficient. P values shown are 2-sided with no 
correction for multiple comparisons.
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Extended Data Fig. 8 | Initial mood parameter’s relation to life happiness. 
Initial mood parameter vs. life happiness rating in the online cohort (left) and 
the confirmatory mobile app cohort (right). Life happiness ratings were always 
multiples of 0.1; small positive random values were added during plotting to 

reduce overlap between data points. Each dot is a participant (left: n=886,  
right: n=21,896). rs denotes Spearman correlation coefficient. P values shown  
are 2-sided with no correction for multiple comparisons.
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Extended Data Table 1 | List and description of cohorts collected

A list and description of cohorts collected. nParticipants contains the number of participants who completed both the task and survey in this cohort. The columns beginning with “Block” 
denote the type, parameter, and number of cycles used in that block. “Rest” denotes looking at a fixation cross, and “task” denotes a simple visuomotor task in which a cross moves predictably 
across the screen and the subject is asked to press a button when it crosses the center line. The number that follows these labels is the time in seconds between mood ratings. “Break” denotes 
a free period where participants could leave to do anything they chose. “Closed” and “random” denote the closed-loop and random gambling task conditions described in the Methods 
section. (“open” denotes open-loop gambling not described in this paper; these blocks were not used in analyses). The + or - after the “closed” label indicates whether mood was being 
manipulated upwards (+) or downwards (-). The number after the * indicates how many cycles of this type were included in the block. Certain cohort names also contain information. The 
AlternateRating cohort rated their mood with a single button press rather than moving a slider. The Expectation cohorts received opening instructions stating that the upcoming rest period 
would be up to 7 minutes or 12 minutes. Groups beginning with “Daily” or “Weekly” returned 1 day or 1 week apart to complete a similar task again (for example, the Daily-Rest-02 cohort is 
the same participants as Daily-Rest-01, returning to complete the same task one day later). The Adolescent-01 cohort is a group of adolescents recruited in person rather than on Amazon 
Mechanical Turk.
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Extended Data Table 2 | Linear mixed effects (LME) model results

Results of the LME model trained on all naïve online adult and adolescent participants who received opening rest, visuomotor task, or random gambling periods; as produced by the pymer 
software package. The first column lists each factor in the model as described in the Methods section. Factors beginning with “is” are binary (0 or 1). “Time” is the mood slope parameter  
we use to quantify mood drift. Mood ratings ranged from 0-1, and time was in minutes. totalWinnings and meanRPE were in points, whose monetary value is unknown to naïve subjects. 
fracRiskScore was the score on a clinical depression questionnaire divided by a clinical cutoff. Age was in years. Factors preceded by “Time:” indicate the interaction of that parameter and 
the elapsed time. The next four columns describe the effect size: “Estimate” is the estimated coefficient of each factor in the model, 2.5 and 97.5 ci are the 95 percent confidence interval of 
the estimate, and SE is its standard error. DF is the degrees of freedom, T-stat is the t statistic, and P-val is the 2-sided p value. All values are rounded to 3 decimal places. The Sig (significance) 
column contains * if p<0.05.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The online tasks were created using PsychoPy3 (v2020.1.2) and were uploaded to the task hosting site Pavlovia for distribution to participants. 
Pavlovia used the javascript package PsychoJS to display tasks in the web browser. Each task used the latest version of Pavlovia and PsychoJS 
available at the time of data collection. The code for the data collection task and survey are now available at https://gitlab.pavlovia.org/
mooddrift .

Data analysis Data were analysed using custom Python 3 (version 3.8.8) software depending on several Python packages, including the Pymer4 package 
(version 0.7.3). This software, as well as the means to create a Python environment that automatically installs it on a user's machine, has been 
made available at https://github.com/djangraw/MoodDrift . As stated on that site, the dependencies and their versions are: python=3.8.8 
numpy=1.19.2 pandas=1.1.5 pytest=6.2.2 joblib=1.0.1 rpy2=3.4.3 matplotlib=3.3.4 seaborn=0.11.1 scikit-learn=0.24.1 numexpr=2.7.3 
patsy=0.5.1 statsmodels=0.12.2 openpyxl=3.0.7 pymer4=0.7.3 r-psych=2.1.3 xlrd=2.0.1 r-mumin=1.43.17 .

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data used in the manuscript have been made publicly available. Online Participants’ data can be found on the Open Science Framework at https://osf.io/km69z . 
Mobile App Participants’ data can be found on Dryad at https://doi.org/10.5061/dryad.prr4xgxkk .
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study consists primarily of quantitative cross-sectional data about the subjective mood of participants and how patterns in these 
mood ratings relate to their depression risk as assessed by clinical questionnaires. Some cohorts of participants completed slightly 
modified versions of the task to assess these patterns’ sensitivity to changes in the task. These cohorts always consisted of naive 
participants to reduce expectation effects, and they were, in general, recruited in series rather than randomized to a condition on the 
same day. Some participants, however, were asked to return multiple times to assess the stability of their mood rating behaviour.

Research sample There are four distinct research samples in this study. 1) Original cohort of Online Adult Participants recruited using Amazon 
Mechanical Turk. Participants were required to be adults living in the United States who had completed over 5,000 jobs for other 
requesters with a 97% satisfactory completion rate. 914 participants completed the task online. Some data files did not save properly 
due to technical difficulties or the participant closing the task window before being asked to do so. 44 participants whose task or 
survey data did not save were excluded. Of the 870 remaining Mechanical Turk participants, 390 were female (44.8%). Participants 
had a mean age of 37.6 years (range: 19-74).   
 
2) Online adolescent participants recruited in person at the National Institute of Mental Health. Adolescent participants recruited in 
person at the National Institute of Mental Health were also invited to participate by completing a similar task on their computer at 
home. These participants completed a different set of questionnaires, developed for adolescents, about their mental health. Every 
participant received the same scripted instructions and provided informed consent to a protocol approved by the NIH Institutional 
Review Board. 129 adolescents completed the task. 10 adolescents who had not completed all three questionnaires were excluded 
from the results as were 3 participants declined to allow their data to be shared openly.  Of the remaining 116 adolescent 
participants, 77 were female (66.4%). They had a mean age of 16.3 years (range: 12 - 19). 56 participants (48.2%) had been 
diagnosed with MDD by a clinician at the NIH, and 4 were determined to have sub-clinical MDD (3.4%). Participants had a mean 
depression score of MFQ = 6.5 (± 5.5 SD) and a mean anxiety score of SCARED = 2.2 (± 3.0 SD). 
 
3) Mobile App Participants: Gambling behaviour and mood rating data were collected from a mobile app called "The Great Brain 
Experiment", described in Rutledge et al., 2014. The Research Ethics Committee of University College London approved the study. 
When participants opened the app for the first time, they gave informed consent by reading a screen of information about the 
research and clicking "I Agree." They then rated their life satisfaction as an integer between 0 (not at all) and 10 (completely). Any 
time they used the app after this, participants could then choose between several games, including one called "What makes me 
happy?" that was used in this research. We used a subset of 26,896 people, largely from the US and 
UK in our analyses.  The median life satisfaction of the included subjects, which will be used as a proxy for depression risk in this 
cohort, was 7/10. Age for this cohort was provided in bands. These are the bands and number of individuals in each band in the 
subset of data used in our analysis: 18-24 (6,500), 25-29 (4,522), 30-39 (7,190), 40-49 (4,829), 50-59 (2,403), 60-69 (1,158), and 70+ 
(294). 13,168 were female (49.0%). 
 
4) Follow-Up Cohort: a cohort of online adult participants recruited identically to Sample #1 to answer specific preregistered 
hypotheses about boredom, mind-wandering, and freely chosen activities. 1143 participants completed the task online in this cohort. 
93 participants were excluded because their task or survey data was incomplete or did not save, because they completed the task 
more than once despite instructions to the contrary, or because they failed to answer one or more "catch" questions correctly on the 
survey. Of the 1050 remaining participants, 463 were female (44.1%). Participants had a mean age of 39.3 years (range: 20-80). 
 
We recruited the adult (MTurk) and an adolescent sample so as to ensure that we cover both age ranges and can therefore draw 
inferences about any developmental differences. The adult (MTurk) sample was collected online and should be considered a 
convenience rather than a nationally representative sample. The adolescent sample was collected so as to be enriched for mental 
health difficulties, MDD in particular. This enrichment allows us also to draw inferences about the relationship between depression 
and passage of time dysphoria in that age range. Finally, the Mobile App Participant sample should also be considered a convenience 
rather than a nationally representative sample.   
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Sampling strategy Cohorts 1-3 are convenience samples. No sample-size calculations were performed a priori. Sample sizes for each batch of the Online 
Adult Participants was ad hoc. All together, nearly 1,000 participants were recruited on MTurk and in person , which was sufficient to 
demonstrate the mood drift over time effect repeatedly both within cohorts and within individuals. The Online Adolescent data and a 
subset of the Online Adult Participants were asked to complete the task multiple times on different days or different weeks, all other 
data was collected cross-sectionally. The adolescent online participants were recruited from an ongoing study characterizing 
adolescent depression.  
 
The Follow-Up Cohort sample sizes were selected using power calculations described in detail in the preregistration. For the scale 
validation experiments, a sample size of 150 in each group with an alpha of 0.01 gives 99.02 power to detect a medium effect (d = 
0.5) and 83.04% power to detect an intermediate effect (d = 0.3) assuming the effect truly is null at a population level. Power for 
linear multiple regression tests were calculated in G*Power. In the boredom and MW cohorts, samples of 150 participants were 
selected to provide 80% power to detect a 7.99% increase in variance explained with the inclusion of a single parameter (alpha = 
0.01, 20 total predictors) and a 95% power to detect a 12.18% change in variance explained. In analyses using a pair of cohorts, 300 
participants gives 80% power to detect a 3.93% increase in variance explained and a 95% power to detect a 6.01% increase in 
variance explained. An Activities cohort of 450 participants was chosen to provide 80% power to detect a difference between the 
Activities and MTurk cohorts of Cohen’s d = 0.2, and it also provides 80% power to detect a decrease in mood in the Activities cohort 
of Cohen’s d = 0.15.

Data collection All data were collected online. Data from Mobile App Participants was collected through a mobile app, all other data was collected 
online through a web browser. No members of the study team were present when participants were completed forms or tasks. 
Researchers were not blinded to experimental condition or study hypotheses.

Timing Data for the original online adult sample was collected in batches from September 27th, 2019 to June 19th, 2020. 
Data from the online adolescent sample was collected from April 6th, 2020 to June 5th, 2020. 
Data from the mobile app participants was collected from January 4th, 2013 to December 9th 2015. 
Data from the follow-up cohorts (Activities, Mind-wandering, and Boredom) were collected from December 9, 2021 to January 8, 
2022.

Data exclusions Data from the original cohort of Online Adult Participants were excluded if data was missing or incomplete or they failed to answer 
catch questions correctly, which impacted 44 participants. In the Online Adolescent Participants, 10 adolescents who had not 
completed all three questionnaires were excluded from the results as were 3 participants who declined to allow their data to be 
shared openly. In linear mixed effects models on the Mobile App Participants, we excluded participants whose average response 
times were more than 1.5 times the interquartile range below the first quartile or above the third quartile. In the 5000 exploratory 
participants, 217 had long average response times and 15 had short average reaction times for a total of 232 participants excluded. 
In the 21,896 confirmatory participants 981 had long average response times and 38 had short average reaction times for a total of 
1019 participants excluded. In the Follow-Up Cohort participants, 93 participants whose data was missing or incomplete or who 
failed to answer catch questions correctly were excluded. 

Non-participation There were 230 adolescents enrolled in the NIMH depression characterization study who were offered to complete tasks for this 
study as Online Adolescent Participants. 129 agreed to complete tasks for this study, a participation rate of 56.1%. 82 (70.6%) 
individuals completed the task a week later and 4 (3.4%) completed the task a third time the following week. Due to the low 
participation rate in the third visit, only the first two were used. There were two longitudinal samples in the Adult Online cohort. One 
subset was asked to return 1 day later (Daily-Rest). Of the 66 individuals who completed both the task and the survey on the first day, 
53  (80.3%) completed the task and survey on the second day. One subset was asked to return weekly for three weeks (Weekly-Rest). 
196 individuals completed the task and survey the first week. 163 (83.2%) of these completed the task and survey the second week 
and 158 (80.6%) completed the task and survey the third week. 149 (76.0%) individuals completed the task and survey on all three 
waves.

Randomization Participants in the Expectation cohorts (a subset of the original Online Adult Participants) were randomised to the 
Expectation-7mRest or Expectation-12mRest cohort at the time of participation. Participants in the Follow-Up Cohort were 
randomised to one of 5 groups (BoredomBeforeAndAfter, BoredomAfterOnly, MwBeforeAndAfter, MwAfterOnly, or Activities) at the 
time of participation. There was no random allocation of participants between conditions in the other cohorts because they were 
collected in series to answer an evolving set of questions about mood drift over time.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Eukaryotic cell lines
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Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Human research participants
Policy information about studies involving human research participants

Population characteristics See above

Recruitment See above

Ethics oversight Because we did not obtain information by direct intervention or interaction with the Adult Online participants and did not 
obtain any personally identifiable private information, our MTurk studies were classified as not human subjects research and 
were determined to be exempt from IRB review by the NIH Office of Human Subjects Research Protections (OHSRP). The 
consent process and task/survey specifics were approved by the OHSRP. 
 
Adolescent participants recruited in person at the National Institute of Mental Health provided informed consent to a 
protocol approved by the NIH Institutional Review Board. 
 
Gambling behaviour and mood rating data were collected from the Mobile App Participants in a mobile app called ”The Great 
Brain Experiment”, described in (Rutledge, 2014). The Research Ethics Committee of University College London approved the 
original study. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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