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Chapter 6

Hierarchical Bayesian Models

It is worthwhile to review the key points covered thus far. We started with the first principles rules
of probability (Section 3.2). We used those rules to develop Bayes theorem (Section 5.1) and to
show how we can factor joint distributions of observed and unobserved quantities into parts based
on our knowledge of conditioning and independence (Section 3.3). We learned about priors and
their influence on the posterior (Section 5.4).

We now apply what we have learned to ecological examples of hierarchical Bayesian models.
These models offer unusually revealing and broadly useful routes to insight because they allow us to
decompose complex, high-dimensional problems into parts that can be thought about and analyzed
individually. We can use the same approach for virtually any problem, regardless of its particular
features.

This chapter has two objectives: 1) To explain hierarchical models and how they differ from
simple Bayesian models; 2) To illustrate building hierarchical models using mathematically cor-
rect expressions. We illustrate the first two sets of steps in the general modeling process that we
introduced in the Preface (Figure 0.0.1 A, B).

We begin with the definition of hierarchical models. Next we introduce four, general classes of
hierarchical models that have broad application in ecology. These classes can be used individually
or in combination to attack virtually any research problem. We use examples to show how to
draw Bayesian networks that portray stochastic relationships between observed and unobserved
quantities. We show how to use the network drawings as a guide for writing out posterior and joint

distributions.
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6.1 What is a hierarchical model?

A statistical model is Bayesian if the unobserved quantities we seek to understand are random
variables whose probability distributions are estimated from observations and prior knowledge.!
Recall from Chapter 5 that a Bayesian model is simple if it represents the joint distribution of those

random variables as the product of the likelihood multiplied by the prior distributions. For example,

01,02,z | vy x [61,02,2,1] (6.1.1)
e N S ot
unobserved observed joint
< [yl61, 09, 2] [61] [62] [#] (6.1.2)
N o o perans?
likelihood priors

is a simple Bayesian model of the unobserved quantities 61,69, and z, and the observations y.2 It is
important to remember that we factor the joint distribution using the rules of probability (Section
3.3), to obtain the product of the likelihood and priors. It is not hierarchical because there is no con-
ditioning beyond the dependence of the data on the unobserved quantities. This means that every
quantity that appears on the right hand side of the conditioning symbol in the likelihood is found in
a prior. The posterior distribution is proportional to the joint because we have the omitted denomi-

nator of Bayes theorem, the marginal distribution of the data ( Lo W61, 62, 2] [61] [02] [] d@ldegdz),

which is a scalar after we have observed the data. At the risk of getting ahead of ourselves, we are

expressing the posterior as being proportional to the joint distribution because this proportionality
is all we need to do to properly develop an algorithm for estimating the parameters and latent state,
which we will cover in the Chapter on the Markov chain Monte Carlo algorithm (Chapter 7).

A Bayesian model is hierarchical whenever we use probability rules for factoring (Section 3.3)

to express the joint distribution as a product of conditional distributions. For example,

[91,02,2",@] X {91,62,2,'3}]

o [yl6h, 2] [2]62] [61] [0-] (6.1.3)

is hierarchical because we have factored [61, 62, z,y] to become [y]61, 2] [2]|62] [61] [62], assuming that

ncluding the “knowledge” that nothing is known.
2Strictly speaking this assumes that 8;,62, and z are independent a priori. This is a common assumption in
Bayesian models. Inference is rarely sensitive to this assumption.
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#; and 65 are independent a priori. We can quickly see that the model is hierarchical because the
unobserved quantity z appears on the right hand side of the “P” in the likelihood [y|61,7] and on
the left hand side of the “|” in the distribution [z]|62]. Note that thefe is 10 prior distribution® for
z because it is conditional on a quantity for which there is a prior distribution, 8. The factoring
of joint distributions into products of conditional distributions is not arbitrary, but rather is based
on our knowledge of an ecological process, how we observe it, and the assumptions we can use to

simplify it, as we illustrate below.
6.2 Example hierarchical models

Hierarchical models are most often applied in ecological research to deal with four commonly en-

countered challenges:

1. Representing variation among individuals arising, for example, from genetics, location, or

experience.

2. Studying phenomena operating at more than one spatial scale or level of ecological organiza-

tion.

3. Estimating uncertainty that arises from modeling a process as well as uncertainty that results

from imperfect observations of the process.

4. Understanding changes in states of ecological systems that cannot be observed directly. These

states arise from “hidden” processes.

These broad challenges are not mutually exclusive; more than one often arises within the same
investigation. Hierarchical models can be used to create a robust and flexible framework for analysis
that is capable of meeting these challenges as they arise. ;

In the following examples we illustrate different types of hierarchical models. At the same time
we show how to graphically represent relationships between observed and unobserved quantities
in Bayesian networks, also called directed acyclic graphs (DAGs), a concept introduced in Section
3.3. Bayesian networks form a template for writing out properly factored expressions for joint

distributions. Our purpose in this chapter is to emphasize writing out mathematical expressions

3Some would call {2]62] a hierarchical prior and [6] a hyper prior, but this perspective is somewhat unconventional.
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as the proper first step in modeling. For now, we will avoid considering how we might implement
or evaluate the model, which will come later. The examples we offer here will be supplemented by
worked problems in model building in Part III, problems that will challenge you to diagram and
write models.

As you read the following sections, it will be especially useful to notice four themes that reoccur
in the examples. The first theme is the one-to-one relationship between diagrams of stochastic
relationships and the fnathematical expressions for the posterior and joint distributions. This is
a critical insight. Next, it will be useful to see how we compose stochastic models by combining
deterministic functions with probability distributions. Hierarchical models are often developed by
substituting a model for a parameter — it is especially instructive to see how we add detail models
and exploit additional explanatory data by “modeling parameters.” This process illustrates how
models of high dimension can be composed, even though the examples here are relatively simple.
The final crosscutting theme in the examples is how we partition uncertainty into multiple sources.
In particular, we will often use a particular factoring of the joint distribution first proposed by
Berliner (1996) and later elaborated by Wikle (2003); Clark (2005); Cressie et al. (2009), and Wikle
et al. (2013), |

10, 0a, 2ly] o [y]2, 6] [216,] [64] (6, (6.2.1)
S S N e

Data  Process Parameters
We decompose the joint distribution this way because it represents such a broad range of problems in
ecological research. There is a “true” ecological state of interest z, a state that is not observable. We
relate that state to the observable data, y, using a model with a vector of parameters 6y, inch/lding
parameters representing uncertainty in our observing system. The behavior of the true state is

predicted with a model parameterized by 6, including parameters representing stochastically in the

process.* This model represents our hypothesis about how an ecological process works.
6.2.1 Understanding individual variation: fecundity of spotted owls

Understanding variation in processes caused by variation among individual organisms forms a central
challenge in population and community ecology. Our first example is fashioned from Clark (2003a)

who studied the effects of individual differences in fecundity on population growth rate of northern

“You may wonder, “Where’s the £7 What happened to observations of predictor variables?” Suspend disbelief for
a moment. We will deal with this question in the next section.
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spotted owls, Striz occidentalis caurina. In this example, we are interested in estimating the average
number of offspring annually produced by each breeding female, that is, their average fecundities,
as well as the average fecundity for the population.

A simple Bayesian model requires the assumption that all owls have the same average fecundity.
This means that variation among individuals occurs from year to year because fecundity is a random
variable, but a sample of many years would have the same average reproductive output for all
individuals. We can represent these ideas in a Bayesian network (Figure 6.2.1 A).

Recall that Bayesian networks (Figure 3.3.1), are drawings that depict probability distributions
graphically. These drawings are particularly useful for showing the dependencies in hiera,rchicﬂ
models. The nodes in the diagrams represent random variables; solid arrows in the diagrams
represent stochastic relationships among the random variables. The tails of the arrows specify the
parameters defining the distribution of the random variable at the heads of the arrows.

Here is an example. Assume we have an observation (y;) representing the number of offspring
of owl ¢ . Before it is observed, the y; arises from a probability distribution with a mean A and

variance o2. We can use the diagram (Figure 6.2.1 A) as a guide to formulate the simple Bayesian

model,
[N o2lyi] o [wilA, 02] (Al [02] - (6.2.2)
N, it A" ~ / ‘
posterior joint

Writing out the posterior distribution is easy. We simply write down a distribution with the un-
observed quantities on the left hand side of the “I” and the observed quantities on the right hand
side. Composing expressions for the joint distribution (i.e., the likelihood multiplied by the priors)
is guided by the diagram - the nodes at the heads appear on the left hand side of a “|* and the
nodes at the tails of the arrows appear on the right hand side. Any node at the tail of an arrow that
does not have an arrow coming into it is expressed as a prior distribution. The prior distributions
must have numeric arguments for their parameters. Because the parameters of priors are constant
(i.e., they are not random variables) they do not appear as nodes in the diagram. Remember, nodes
represent random variables.

It may strike you that diagrams are superfluous when you are writing down simple Bayesian
models and your impression is correct. However, these diagrams become more useful in helping

us visualize and write down hierarchical relationships. They are especially helpful (at least for
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Yi &3
A W
= |
=
Y
a5
[\ o2ly) o [wilA, 02] [A] [02]
B Yi gb:S l
< |
=
Yi

2
o

A g
/ \ Ai
w ¢?

(X, o0, w, S lys] o [wil i, 03] [N w, 6] [02] [w] [6*]

Figure 6.2.1: Bayesian networks for simple (A) and hierarchical (B) Bayesian models of fecundity of spotted
owls. There are only two levels in the simple model (A) because the joint distribution is a product of the
likelihood and the priors. In this case, we assume the data arise from a mean fecundity (A) that is the
same for all owls. The only variation is due to sampling, represented by o2. There are three levels in
the hierarchical model (B) because the joint distribution is a product of two conditional distributions and
the priors. In this case, we assume that each owl has its own average fecundity (Ai) that is drawn from a
distribution with mean w and variance ¢?. Note the correspondence between the heads of arrows and random
variables on the left hand side of conditioning symbols in the joint distribution and the tails of arrows and
random variables on the right hand side of conditioning symbols. Any random variable at the tail of an
arrow without an arrow leading into requires a prior distribution. The equations and the diagrams represent
distributions (right column) where the heads of the arrows are the random variables shown on the x-axis
and the tails of the arrows are the moments (or the parameters) that define the distributions.

Pilw,<?]
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ecologists, if not statisticians) when there are complex, multi-level relationships among observed
and unobserved quantities, as we will soon see.

We now model the case where each owl has its own mean fecundity. Variation in average
fecundity among individuals might occur because of differences in genetics or age or variation in the
quality habitats where they establish territories. In this example, we are not trying to determine
the causes of individual variation, but simply to acknowledge that it exists and to include it in our
model. This is a key idea.

Consider a network with an additional level in the hierarchy (Figure 6.2.1 B). We now treat
the average fecundity of each of individual (\;) as a random variable drawn from a distribution
mean w and variance ¢2. The observation y; comes from a distribution of the annual fecundities
of each individual. Note the subscript on A; indicating that each individual has a fecundity — the
observations for owl ¢ will vary from year to year, but over the long term the observations on owl ¢ will
average ); . Assuming individual owls have fecundities that are drawn from a distribution treats
fecundity as a random effect where as assuming all individuals have the same average fecundity

treats fecundity as a fized effect (Box 6.2.1).

Box 6.2.1 Random effects

The terms random effect and fized effect are used in the scientific literature in ways that
can be confusing. Gelman and Hill (2009, page 245) offer several examples of inconsistent use
of the terms random and fixed effects. They 1‘ecbmmend dispensing with the use of the term
“random effects” all together, replacing it with group level effects. This is a sensible suggestion
because all “effects” are considered to be random variables in the Bayesian framework. However,
“random effects” is widely used, sometimes pertaining to individuals rather than groups. We
will use the term later in the book and explain it here.

In Bayesian hierarchical modeling, random effects are used to describe variation that occurs
beyond variation that arises from sampling alone. Here is an example. Imagine that you want

to estimate the average aboveground biomass in a grassland. You take a sample of biomass in

several .25 m? plots. If the biomass is randomly distributed across the area you sample, then a
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reasonable way to model the variation in the biomass in the it* plot (ys) would be

Vi = ptg

& ~ mnormal(0,5?),

which is the same as

y; ~ normal(u, o2),

where 4 is the mean biomass per plot and o? is the variance among plots. We generally prefer
the latter notation because not all variation is additive. If a random variable like y is strictly
positive, then adding a random variable to it to represent uncertainty makes no sense because it
cannot have a mean of 0. Alternatively, the notation [y;|7, Blis a prdbability mass or probability
density function and y and § are parameters works for any random variable, regardless of its
support. We are using a normal distribution for clarity here, but because biomass is strictly
positive, a better choice might be lognormal or gamma. However, this somewhat complicates
the example, so to keep things simple and familiar, we chose the normal.

Now imagine that you sampled at five different locations, indexed by j. If we treat location
as a fized effect, our model doesn’t change because we assume that the variation is due entirely
to sampling, i.e., y;; ~ normal (,u, 02). When we do this we are treating the u as fized across
the locations. Alternatively, we might more reasonably assume that there are differences in
productivity among sites arising from any number of different sources — soil type, depth to the
water table, topography, level of herbivory and so on. In this case, we would allow each location
to have its own mean biomass drawn from a distribution of means with hyper-parameters mean

of means equal to o and variance of means equal to ¢2. Our model then becomes

yij ~ normal(u;, a]?) (6.2.3)

pi ~ mnormal(a,<?). (6.2.4)

In this case, we are treating the effect of location as random - it varies randomly according to

sources of variation that we acknowledge exist but that we are not attempting to explain. You
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will also see this written as

Yij = pjt+€j (6.2.5)
pi = a+mn; (6.2.6) |
€ij ~ normal (0, 032-) (6.2.7)
7; ~ normal (0, g2) . » (6.2.8)

We have used the problem of estimating a mean to illustrate random effects, but the same
idea applies to any parameter in any model. For example, a common use of random effects is

to allow the intercepts of regressions to vary by location or some other grouping variable, e.g.,

v ~ normal (8; + fiij,0°) (6.2.9)

Bi ~ mnormal (i,¢?). (6.2.10)

We used the diagram (Figure 6.2.1 B) as a template to write down the posterior and joint

distributions,

[\, 02, w, 2|y o [yil)\i,ag] i |w, <% [ag‘] [w] [gzl. (6.2.11)

~ ~
" g

posterior joint

Again, it is important to see the relationship betweeﬁ equation 6.2.11 and the Bayesian network
representing the relationships the equation embodies (Figure 6.2.1 B).

We have come a long way toward writing out our complete model but we are not finished. We
need to choose appropriate probability distributions for each of the random variables described
with the bracket notation and we need to think about how to represent multiple observations (i.e.,
a vector, y). Recall that the support for the random variable and its dispersion guide our choice
of a distribution to represent the random variable. The random variable y; is discrete — a female
produces individual offspring — so the y; are integers. If we assume that the variance in the y;

is approximately the same as the mean, then a logical choice for modeling the y; is the Poisson
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distribution,®

y; ~ Poisson( ;).

The average fecundities ();) are continuous, non-negative random variables, so a gamma distribution
is a logical choice to model them. Moreover, w and ¢? are also continuous and strictly non-negative,

S0 we use a gamma distribution for their prior distributions. Vague priors for these parameters are’

w ~ gamma(.001,.001) (6.2.12)

¢* ~ gamma(.001,.001). (6.2.13)

These are reasonable choices if we have no previous knowledge of the distribution of the A;. To

assemble our full model, we use the full data set (y) consisting of n observations,

e 2
2 . W W
A w,fly] o J:ll Poisson (y;|\;) gamma ()\i Eé—,?) X
gamma(w|.001, .001)gamma (s?|.001,.001) . (6.2.14)

Remember that taking a product across the individual likelihoods to estimate the total likelihood
requires the assumption that the observations are independent.

There are two potential sources of confusion here, both of which are instructive. First, what
happened to ¢2? In our original Bayesia,n network, the distribution of fecundities was governed by a
mean and a variance-which makes sense because all random variables are drawn from distributions
and distributions have means and variances.> However, there is no ¢2 in our hierarchical model
(equation 6.2.14). Actually, there is a variance for y; in equation 6.2.14 — recall that in the Poisson
distribution the variance and the mean are assumed to be equal.

The second result that might be puzzling is seen in the parameters for the gamma distribution,
%; and f’; Where did these come from? The parameters for a gamma distribution are ¢, the shape,

and B, the rate. Recall from the section on moment matching the mean of the gamma distribution

is % with variance 73%; (3.4.4), allowing us to solve for & and § terms of the means and variance, i.e.,

5If this assumption doesn’t hold, then the negative binomial distribution would be a better choice. Later (8.1),
we will learn methods to evaluate the assumptions we make in choosing distributions.

®There are exceptions to this generality. For example the means and variance of the Cauchy distribution are not
defined. However, all of distributions we will use in this book have means and variances. See Appendix tables A.1
and A.2.
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o= ‘;—’;—, B = ;‘% The average fecundity for the population w = %‘- .

These clarifications make an important point about drawing Bayesian networks and cohverting
them into mathematical expressions. Remember that the heads of arrows in Bayesian networks are
random variables governed by a distrirbution defined by the parameters at the tails of the arrows
(i.e., Figure 3.3.1). Thus, it is possible to define these distributions in terms of means and variances
or in terms of parameters. It follows that it would have been perfectly correct” to write out the

model as

VL
Ao, Bly] HPoisson(y,-I)\i)gamma(/\ila,ﬂ)><
i=1

gamma(c|.001, .001)gamma (.001,.001) . (6.2.15)

The point is that Bayesian networks are thinking tools — graphical aids for properly writing out
models. In some cases it will be most helpful to think about stochastic relationships in terms of
the moments of distributions; in other cases it will be more useful to think in terms of parameters.
Moment matching allows these approaches to be interchangeable. We can be flexible in our use of
tools.

We now extend this example to illustrate how we might add parameters and explanatory obser-
vations (i.e., covariates) to our model to explain variation among individuals in fecundity. Repro-
ductive success for many species of vertebrates rises to a peak during mid-life before declines (Part
and Forslund, 1996; Hamel et al., 2012) as individuals grow old. Thus, it might be reasonable to
model \; as a quadratic function of “reproductive age,” defined as time after the animal is capable
of reproduction, z; = T; — z¥ where Z; is the chronological age of the ith individual, z? is the age of
first reproduction. Thus, an animal is z; = 0 when it first reproduces. Defining age this way makes
for a convenient interpretation of the intercept.

We now model of the process “change in fecundity with age” g (o, 3, z;) as,

7 Actually, most statisticians would prefer this.
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glaB,z) = a+pizi+ foz?
n . 2 .
[A,,@,a, Uf,ly] o HPoisson (yi|\i) gamma (/\i I g(a,aﬁ?, x;) ’g(azﬁ,xz)) x  (6.2.16)
=1 P P
2
H normal (5;]0, 100) normal(c|0, 100)gamma,(a§].001, .001)
j=1

2163 where « is the average reproduction of an owl at reproductive age 0, #1 and (o are parameters that
2164 control the change in fecundity with age, and crg is process variance. It is important to understand
2165 that process variance includes all of the influences that create variation in fecundity beyond the
266 effect of the bird’s age. It is important to see that we have replaced the parameter w with a model
2167 g (o, B, x;) that exploits observations on an owl’s age and our understanding of the relationship
2168 between age and fecundity.

2169 Again, we choose gamma distributions for \; and af, because they are continuous and strictly
a1i70 positive. The distribution for A; could be viewed as a “prior” informed by our process model.
zzn - Parameters of the other gamma distributions are chosen to be weakly informative. We choose a
a7z normal distribution for the Bs because they are continuous random variables that can take on any
2173 real value. To minimize the information contained in the priors for the Bs we center them on 0 and
2174 assign a variance that is very large relative to their values.

2175 You might reasonably ask, “Why doesn’t the data set x appear in the posterior distribution
2176 in the same way that y does? After all, both are observed quantities.” The short answer is this.
2177 The x are not treated as random variables in this formulation. You are right that both the x
zi7s and the y are observed, but in this case, we are assuming that the x data are observed perfectly®,
279 while the data y are random variables. This means the x are known, fixed quantities, treated no
2180 differently than the constant 7 in the normal distribution. They are not random variables and
2131 hence, they should not appear in the expression for the posterior distribution which, by definition,
2182 is composed of random variables. The predictor variables correctly appear as arguments to the
2183 deterministic function g (o B, z;). There are cases when the predictor variables do appear in the

2184 posterior distribution and we will describe these cases in a subsequent example and in Box 6.2.2.

8You may recall the assumption of conventional linear regression, customarily but often wrongly ignored by
ecologists, that the predictor variables are measure without error.
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What else might influence fecundity? We might reasonably hypothesize that the fecundity of
each owl at reproductive age 0 should increase with decreasing territory size (e.g., Elbroch and
Wittmer, 2012), which is to say that territory size shifts the curve g (o, B, x;) up or down. A
reasonable deterministic model of this process is h(vy,v,u;) = ye %, where u; is the observed
area of the territory of the #** individual; « is the maximum potential fecundity during the first
reproduction; v controls the decline in mean fecundity that occurs as territory area increases. We
can include this process in our model by allowing each individual to have a different intercept in

the “change in fecundity with age” model g (o, B, z;) where

. 2 ,
aiwgamma(“%@“z) ﬁ(%;&m)) . (6217)
p $p

The parameter gg is the process variance associated with the territory model, including all of the
influences on an individuals fecundity at first reproduction that are not determined by territory
size.

We can now see the relationship between this model and the general template we outlined above

(equation 6.2.1),

(65,0, 7ly] o [y]204) [216,] [0)(6)) (6.2.18)
R il R
Data  Process Parameters
[ilz:,64] = Poisson (y:| M) - (6:219)
N
data :
. . 2 . .
[2i]0p] = gamma [ A (g(a,,ﬂQ,xz)) ’g(a,,f,mz) X (6.2.20)
N’ O'p Op
process
. 2 .
gamma (ai hr ) hiny m)
2 sz
2
64)10,] = H normal (5|0, 100) gamma(af,l.OOl, .001) x (6.2.21)
Parameters =1 )

gamma (¢2].001,.001) .

Again, notice that the predictor variables x and u do not appear in the posterior distribution

because we assumed they are known.
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Birds were marked and followed throughout their lives, so it is reasonable to assume that age
was measured perfectly. But this is not a reasonable assumption for territory size. Assume that
we have data on the variance in the estimate of territory size for each bird, s?. We can now think
of an observation of territory size as a random variable arising from [uiln,sf] where 7; ié the
true, unobserved territory size and s? is the measured observation variance. Modeling the predictor
variables this way means that the u; is a random variable and must be included in the expression for
the posterior distribution. The full model predicting owl fecundity is shown as a Bayesian network
and an expression for the posterior and joint distributions in Figure 6.2.2. We provide general

guidance on when to include predictor variables in posterior distributions in Box 6.2.2.
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j=1

gamma(cff,l.OOl, .001)gamma(s?|.001,.001)

Figure 6.2.2: Hierarchical model of fecundity of spotted owls. Relationships between random variables are
shown with solid arrows; deterministic relationships are shown with dashed arrows. The observation of
fecundity of each owl y; is a random variable controlled by its average fecundity (A;) and sampling variation
resulting from the particular year the owl was sampled. The average fecundity individual A; is modeled as
a quadratic function of the owl’s age (z;) with parameters ¢, f1, 82. We assume age is known. Variation
in the A; not captured by the model is represented by og. We assume that the parameter ¢;, the fecundity
of owl ¢ at first reproduction, decreases exponentially with increasing territory size u;, which is measured
with error captured by the known observation variance sf. The rate of decrease in «; is controlled by the
parameter . The maximum possible value of ¢; is =y, which occurs at territory size of 0. Variation in the oy
not represented in the exponential model is represented by gg . The expressions for the posterior and joint
distributions of the unobserved and observed are shown at the bottom of the figure. Note the correspondence
between the diagram and the expression for the joint distribution. Quantities at the heads of the solid arrows
are on the left hand side of the conditioning symbols. Quantities at the tails are on the right hand side.
Quantities at the tails of solid arrows with no arrow leading into them must have prior distributions with
numeric arguments. The quantities at the tails of dashed arrows are treated as known.
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It is useful to think about the relationships between the equations we used to construct the
model and to consider where uncertainty arises. We have observations of a process that includes
sampling error in our estimates of the fecundity of individual owls.® In our first model (equation
6.2.14), we have a single term for uncertainty that arises in the process of reproduction because
different owls have different mean fecundities resulting from differences in age, location, genetics,
and all other sources of variation. In our second model (equation 6.2.16), we seek to reduce that
uncertainty about the process by including additional knowledge — the age of each owl — and by
using a model that explains variation in fecundity in a biologically sensible way. In our third model
(equation 6.2.17), we seek to reduce uncertainty further by modeling the average reproduction at
reproductive age 0, the intercept in the effects of age model, as a function of territory size. We
include all of the variation in the true, average fecundity that is not explained by our model in the
stochastic terms a]% and qg. It is important to understand that our deterministic models g() and
h () could have taken any functional form, linear or non-linear. In the fourth model (Figure 6.2.2)
we add uncertainty in observations of territory size. The observed territory size a random variable
arising from a distribution governed by the true territory size ‘T‘;: and measured observation variance,
s%, treated as known. If we had information on the distribution of the observation variance, we

could have treated it as a random variable.

Box 6.2.2 When are predictor variables included in the posterior distribution?

A common error in writing out expressions for the posterior and joint distribution is to
include predictor variables, i.e., the x, on the right hand side of the conditioning in the posterior
distribution when we assume (rightly or wrongly) that the x are measured without error - they
are known. Hence, they are not random variables and should not be included in the posterior
distribution. It is fine that they are arguments to a deterministic function representing an
ecological process, but if we include them in the posterior distribution then the factoring of the
Jjoint distribution doesn’t work out in a sensible way.

Consider a simple example. We have a deterministic model g(8,z;), the output of which

gives the mean of a response, y;. Variation in y; occurs because our model omits many influences,

“Remember, the observation variance in this case equals the mean. We could use a different distribution, for
example a negative binomial, if we wanted to estimate the observation variance separately.
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which we quantify with process variance ag. We assume the y; are measured perfectly, but we
nonetheless treat them as random variables because of the uncertainty about the process that
our model fails to capture. We will drop the g() wrapper to make the factoring more clear.

Consider the wrong expression for the posterior and joint distribution,

[9, crf,]yi, a:,:] o [yi, 8, af,, 3:,] (6.2.22)

[6,0:,2,|yi,:ci} x [inQ,U;‘;,xi] [6] [US] [zi] , (6.2.23)

which is obviously incorrect because we require a prior on the known value of the observation

z;. The correct expression is

[0, 05ly] o< [11,6,07] (6.2.24)

[e,aﬁlyi] os ['yﬂ@,a%,] (6] [0}2,] , (6.2.25)

as illustrated in panel A of the diagram below. The z; are implicitly part of these expressions

as shown in the Bayesian network. It would also be correct to write

[97031%] x [yilg (6:371') 3027] [0] [Uz] ’

to highlight the deterministic model g (0, x;).

A B
T — — *Yi Zi /yi
0 o) o> Xi 8 o}

C D
o2 T Yi '
! \
R ]
 xi ] 0123 i 2
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There are cases where we treat the predictor variables as random variables because we want

to model errors in observing them. If we assume that the observations of the predictor variable

- are imperfect, then we might model them arising from a distribution [azi}xi, crg] where x; is
the true, unobserved value of z; and o2 represents uncertainty in the observation process. Our

deterministic model is now ¢ (8, x;). As shown in panel B, we now have an expression for the

posterior that factors correctly,
0,02, xi, 0511, i) o [yil0, 05, x4 [wilxs, 2] (0] [02] [02] i) - (6.2.26)

One more point bears mentioning. Models for predictor variables that take the form
[Xi[a:,-, ag] are sometimes seen in the scientific literature. These models portray the true, unob-
served value of the predictor variable as a random variable determined by the known observation
and known observation variance (panel C, above). In this case, the expression for the posterior
and joint is

[610§7Xilyi} x [y’ile70§7 X'L] [Xilzia Ug] [9] [012)} . (6227)

Again, the deterministic model is g (8, x;). Note that there is no longer on a prior on ¥; because
it is seen on both sides of a conditional symbol. Also note that z; and o2 are no longer seen
in the expression for the posterior because they are not random variables. Hence, they do not
require a prior. We think a better way to do this would be to treat a'g as a random variable

informed by a strong prior developed in calibration studies (panel D), in which case

[B,UZ,Ug,Xdyi] [0S [inG,af,,xi] [Xila:i,crg] (6] [012,] [oﬁ] . (6.2.28)

6.2.2 Multi-level models: controls on nitrous oxide emissions from agricultural soils

Data in ecological research are often collected at multiple scales or levels of organization in designs
that are nested (Figure 6.2.3). “Group” is a catchall term for the upper level in many different
types of nested hierarchies. Groups could logically be formed by populations, locations, species,

treatments, life stages, and individual studies. We have measurements within groups on individ-
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ual organisms, plots, species, time periods, and so on. We also have measurements on the groups
themselves, that is covariates that apply at the upper level of organization or spatial scale. Mul-
tilevel models represent the way that a quantity of interest responds to the combined influence of

observations taken at the group level and within the group.

Group 2
Group 1
*1,2 .2 21 %5
: 2,3
X x 15 X
1,3 1,7 *2.4
x
1,6
’ x w
1,4 2 Group 4
Group 5 <
Wy 4,3
*5,3 Y44 x
Group 3 *52 X5 7 ‘ 4,1
’ x x
4,6 4,5
. *55  *56 .
3,1 x 4,2 .
3.3 5,1 x5 4 4,4
*32  *33 ’ "
3,4 W
w3

Figure 6.2.3: Observations of states and processes in ecology are often made at different scales of time,

space, or level of organization. We can think of the upper level as a “group” with associated observations

w; on the 4 group. We also have observations within each group, z;; where the notation ij means the ith

observation in group j. In this illustration there are variable numbers of observations within groups (i.e., the
design is unbalanced) and 7 == 1,..., 5 observations for groups. Note that when the number of observations is
unbalanced, as it is here, product symbols in likelihoods for observations within groups must have an upper
index appropriate for the number of observations, e.g., n;.

Here, we modify the hierarchical example developed by Qian et al. (2010) (using the data
of Carey (2007)) to illustrate a multi-level model. Nitrous oxide, a greenhouse gas roughly 300
times more potent than carbon dioxide in forcing atmospheric warming, is emitted when nitrogen
is added to the soil in synthetic fertilizers. Carey (2007) conducted a meta-analysis of effects of
nitrogen fertilizer addition (gN - ha™*. d!), reviewing 164 studies. In this example, studies occurred
at different locations, forming the group level in the hierarchy. Soil carbon content (g - C - g lorganic
matter) was measured as a group level covariate that was assumed to be measured without error.

Replicated observations of NoO emission, also assumed to be measured without error, were paired
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with measurements of fertilizer addition (kgN- ha). The type of fertilizer was also studied, but we
choose to omit this effect to simplify the example. There were a total of 1085 observations across
all of the studies.

We could model the observations of NoO emission as

9(a;,B,zi5) = aj+ By (6.2.29)

la7,8,07,luig] o [wisla (g, B,215) 3] [, 6°] 18] (14 [0F] [67) (6.2.30)

where y;; is the ithobservation of NoO emissions in study j and z;; is a paired measurement of
fertilizer addition. The model g(a;,B,;;) represents the hypothesis that emissions increase in
direct proportion to fertilizer additiohs. The intercept «; varies among studies as a random variable
drawn from distribution with parameters i and ¢2. The fact that we explicitly represent variation
among studies using the distribution of the a; is what sets this analysis apart from conventional,
single level regression that could be done separately for each of the 164 individual sites or by pooling
all of the data across sites to estimate a single intercept and slope. The 0’? represents the uncertainty
about NoO emissions that comes from sampling variation within a study and the ¢2 represents the
uncertainty that arises as a result of variation among studies. An advantage of this hierarchical
approach is know as borrowing strength, which means that estimates of the intercepts from locations

will small datasets are made more precise by studies with larger datasets (Box 6.2.3).
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Box 6.2.3 What does “borrowing strength” mean?

You’ll often read the phrase “borrowing strength” in papers that use Bayesian hierarchical
models. In this context, borrowing strength refers to the sharing of information among unknowns
in Bayesian models. For example, consider the situation where a researcher measures leaf area
index (LAI) for each plant in a set of five plots. Suppose that the numbers of plants in each plot
are 10, 12, 8, 10, and 2. Clearly the last plot will carry‘less information about plot-level LAI
because of its smaller sample size. A classical Bayesian remedy for this small sample situation
is to specify a hierarchical model to help learn about plot-level mean LAIL In this case, let y;;
be the LAI measurement for plant 7 (i = 1,...,n5) on plot j ( =1,...,J) and the plot-level

mean LAI be z;. A complete Bayesian model could be formulated as

Yij o~ normal(zj,org) , (6.2.31)
zj ~ normal(y,o?), (6.2.32) |
p ~ mnormal(uo, of) , : (6.2.33)
o2 ~ inverse gamma(a,, ;) , (6.2.34)
012, ~ inverse gammal(ay, By) . (6.2.35)

At the risk of getting ahead of ourselves, the full-conditional distribution for the mean of plot
with the small sample size z5, is [25]-], where the notation reads “the distribution of z5 conditional
on the data and other parameters that influence its value.” (We cover full-conditionals in detail

in Section 7.3.2.1). Thus, the distribution of z5, will contain two terms:

ng
[25]] H normal(y;s|2s, cr;)normal(zg,{u, o2y, , (6.2.36)

i=]

one term containing the portion of data collected at plot 5 and a second term that depends on

the mean of plot-level means and an associated variance component.

In fitting the model, all of the data (not just the data for plot 5) will help estimate x and

o2, We can think of normal(zs|u,o2) as a “prior” for z5. The information contained in this

second term will lead to a posterior for z5 that is more precise than the resulting posterior from
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a model where o2 is assumed to be known and vague a priori.

In a sense, the information about u and o2 from the rest of the plots, will “shrink” 25 for plot
5 back to the appropriate distribution of plot-level means. The plots with more data will provide
more information about the proper amount of dispersion in the distribution of plot-level means
which, in turn, provides more information about plots with smaller sample size. Therefore, the
variance of zz will be smaller than it would have been if we had simply used a vague prior for
all z;.

This concept of borrowing strength is not really unique to Bayesian statistics, as it can be
interpreted as a random effect in the model. However, the Bayesian perspective of these types
of random effects is particularly clear and rigorous. We will return to the general concept of
“shrinkage” in later chapters when we describe statistical regularization and its many benefits,

including model selection.

We now seeky to explain some of the variation among sites using the observation of soil carbon
content taken at the group level (similar to the example above, Section 6.2.1, where we modeled
fecundity as a function of the covariate, age). Instead of simply estimating an average value for
the intercept (equation 6.2.30), we instead model the intercept for each study as a linear function
of the observations of soil carbon at the gfoup level, that is, the a; are predicted using the model
h(k,n,w;) = & +nw; (Figure 6.2.4). Choosing lognofmal distributions!® for the distribution of the

data and the intercepts makes sense because they are continuous and non-negative

yi; ~ lognormal (log (o5 + Ba,;) ,07) (6.2.37)

aj ~ lognormal (log (k + nw;),<?). (6.2.38)

The parameters in these expressions might require some review. Let g be the first parameter of a
lognormal distribution. The median of the lognormal distribution equals e, so log(median) equals
p. Thus, if our deterministic model predicts the median of the posterior distribution, we take its
log to obtain the first parameter. The second parameter is the variance of the random variable on

the log scale.

0 Gamma distributions could also be used.
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KN Lif — — — = Yij Data
T / X o2 :
o B9 Indvidual level
Ky 1 ¢? Group level
glaj, B,zi5) = aj + By
h(k,m,ws) = K+nw;

164 nj

[aJIBa(:";’i’n)gly] & H Hlognormal (yzg“Og (g(aj;ﬂy w%_‘])) 705) X
j=1li=1

lognormal (a;|log (h(k, n,w;)) ,6%) %

inverse gamma, (aj? [.001, .001) X

normal (#]0, 1000) gamma (x].001,.001) x
normal(n|0, 1000)inverse gamma(s?|.001,.001)

Figure 6.2.4: Bayesian network and posterior and joint distribution for the meta-analysis of effects of fertilizer
on nitrous oxide (NoO) omissions. The y;; are observations of NoO emissions accumulated from 164 different
studies. The y;; are modeled as a linear function of the level of fertilizer added within a given study, Tij
where j indexes study and the subscript ij indicates the i*" observation within study j. The n; are the
number of observations from study j. Intercepts in the individual level model (o ) varied among groups
(ie., studies) as a function of soil carbon content (w;). Uncertainty within individual studies (03) was
allowed to vary among studies. Lognormal distributions were chosen for ;; and a;; because both quantities
must be non-zero. Inverse gamma priors were chosen for the variances (02-,c2) because an inverse gamma

J
distribution is a conjugate for the variance of lognormal distribution assuming the mean is known (A.3).
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We are not limited to modeling the intercept at the group level; we could also allow the slopes to
vary among sites or allow both intercepts and the slopes to vary. See Gelman and Hill (2009, page
376) for details. Moreover, we emphasize that our choice of linear models to represent the process of

N3O emission is no way mandatory — we could use any function form that makes biological sense.!?

6.2.3 Hidden processes: effects of predation by tree snakes on lizard populations

Ecologists often want to answer questions about the state of a system that cllanges over time or
space. Many of the states that we strive to understand cannot be observed directly but instead arise
from processes that are “hidden” (e.g., Newman et al., 2006; Tavecchia et al., 2009; Liberg et al.,
2012; Gimenez et al., 2012). We must make inferences about these unobservable states and hidden
processes from the behavior of quantities that we can observe. We will refer to unobservable states
as latent. Here, we illustrate an especially valuable use of Bayesian hierarchical models: estimating
latent states and how they change over time, space, and in response to perturbation.

Campbell et al. (2011) tested the hypothesis that exothermic predators influence the abundance
of their exothermic prey using predation by brown tree snakes (Boiga irregularis) on lizards on the
island of Guam as a model system. This research offers an especially useful example because it
illustrates how hierarchical models can be used to analyze designed, manipulative experiments. The
research team pbserved lizard abundance on four, 1 ha plots, which we will index by m =1,...4.
All tree snakes were removed from two of the plots and the two were left as controls with ambient
levels of snake abundance. Lizards were counted on five transects within each plot (indexed by 7).
Counts were repeated seven times on each transect (on different days, indexed by t) within each '
of six monitoring periods. We will omit the monitoring period dimension of the experiment, which-
means that time (t) refers strictly to repeated measures of transects.

The research team needed to estimate the true, unobserved lizard abundance on each transect
based on counts along the transect. A key problem in this kind of research is that counting all
individuals is virtually impossible because some lizards that are present inevitably escape detection.
The mismatch between what we are able to observe and the true state we want to understand
requires building a model of the data, a way to estimate the probability that a lizard is observed

(¢) on a transect at a given time conditional on it being present. A sensible approach for modeling

11t might make more sense, for example, to model the intercept as an asymptotic function of soil carbon, something

like h,(li, 7, ’Ll)i) = niwujg *
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the data would start with

Yitm ~ binomial (zim, @), (6.2.39)

¢ ~ beta(l,1), (6.2.40)

which simply says that the observations of the number of lizards counted on transect ¢ observed at
time ¢ on plot m can be represented as a random variable ¥y, drawn from a binomial distribution

where 2, is the known true, unobserved number of individuals on the it*

transect of plot m and ¢
is the probability of observing an individual. Thus, 2;,, represents the number of “trials” on transect
i in plot m, that is, the number of lizards that were present and might be found; yizm is the number
of “successes,” the number of lizards that were found, and ¢ is the probability of a success on a
single trial, the probability that we would observe a lizard if it were present (Royle, 2004). By
taking replicate observations on the transect, and assuming for the moment that z;, is known, we

can estimate ¢ on the back of a napkin using a beta-binomial conjugate prior relationship (i.e., as

shown in Section 5.3). The full expression for the posterior and joint distributions is

5 7 4 ‘
[#ly) = ][ 1] 1] binomial (yitm|2im, ) beta (4]1,1) (6.2.41)

j=1 t=1 m==1

Recall that we do not include z in the posterior distribution because at this point, we are assuming
it is known.

Our initial model (equation 6.2.39) requires the assumption that there is a single detection
probability applying identically to all time periods and all transects within a plot in much the same
way that we assumed that all owls had the same average fecundity (Section 6.2.1). We could improve
on the model by allowing each transect and time to have its own detection probability, reasoning
that observability is likely to vary over time and space. Transects might differ in the availability
of lizard hiding places and observation times might inciude different temperatures that affect lizard

activity levels, both of which would alter lizard exposure to the observer. Campbell et al. (2011)
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2318 included this variability in the data model using

Yitm ~ binomial (2im, $itm) (6.2.42)
IOglt (¢ztm) = @+ a.itm (6243)
Q14m ~ normal (0, 531) (6.2.44)

2319 where oy is the overall, mean probability of detection of lizards on the plot, and aym is a random
2320  effect (Box 6.2.1) of transect and observation time. Thus, a1 itm Tepresents the variation in detection
2321 probability that arises from differences among transects and sampling occasions on plot m.

2322 It might be useful to think of equation 6.2.42 as an “intercept only” (i.e., ag) linear model, making
2323 it analogous to examples developed above that had group-level intercepts (Sections 6.2.2 and 6.2.4).
2124 As before, we are allowing the “groups” time and transect to have their own intercepts drawn
2225 from a distribution with mean inverse logit (cg). There is variation around this mean probability
2326 of detection created by random variation among transects and observation times, variation that
2327 is portrayed by the parameters osm. Notice that we are not modeling how this variation arises
228 as we might do if we had covariates, say on temperature or vegetation cover.' Instead, we simply
2329 acknowledge that the variation exists and include it using the random effect terms.

2330 It might appear on first glance that the model (equations 6.2.42 - 6.2.44) contains only a single
2331 source of uncertainty, the random effect oy i1m and the associated parameter controlling its distri-
2332 bution agl. This flies in the face of the idea that random effects are included in models to capture
2333 uncertainty that extends beyond sampling variation. However, remember that there is a sampling
2334 variability included in the binomial likelihood (6.2.42); the variance of which is n¢ (1 —¢) (i.e.,
2335 Section 3.4.3.1). So, sampling variability is implicit in the binomial and hence there are two sources
2336 of uncertainty in this observation model - uncertainty arising from sampling and uncertainty arising
2337 because the ability to detect lizards varies among times and transects.

2338 It is important to understand that we could achieve the exact same meaning with slightly

2330 different notation,

Yitm ~ binomial (zim, Gitm) (6.2.45)

logit (¢itm) ~ normal (u(l,,ai). (6.2.46)
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Notice that in the first case (equations 6.2.42 - 6.2.44) we a mean 0 random effect (a1itm) to an
overall mean. In the second case (equatiohs 6.2.45 - 6.2.44), we model random effects random
as random draws a;un from a distribution with mean p,. It is important to see that these are
algebraically identical because both types of notation are widely used in the literature.

A third equally correct alternative for this model would be:

Yitm ~ binomial (2im, Pitm) (6.2.47)

bim ~ beta(diumla,B). (6.2.48)

In this case, we not transforming ¢y to cause it to take on values that could range from —oo to
+00 appropriate for the normal distribution, but rather are choosing a distribution appropriate for

a random variable that can take on values in the interval 0 to 1. The mean of this distribution, you

&

will recall from Section 3.4.4, is v

Up to now, we have assumed that the true number of lizards on a transect was known, which
of course it is not. We now develop a model of processes controlling the true, unobserved lizard
abundance each transect, zy,,. Thus, 2, is now a random variable. The main interest in this study
is the variation of numbers of lizards among plots, particularly the variation that is contributed
by the snake-removal treatment. So, now we model the means of the four plots (two of which had

predators removed) using:

Zim  ~ POisson (eﬁo,m‘*‘ﬂlmim) (6249)
Bom ~ mnormal(0,100)

B1 ~ mnormal(0,100) (6.2.50)

where z;, is an indicator variable equal to 1 if plot m had snakes removed and 0 otherwise. It
is entirely reasonable to assume that the z;,, are measured without error because treatments were
assigned by the investigators. In this model, fom is the mean abundance of lizards on plot m.
Note the average abundance on transect ¢ within plot m is determined by this mean abundance
as modified by the treatment effect, ;. Campbell et al. (2011) made repeated observaﬁons at the

transect scale but mean abundance, i.e., fom was modeled at the plot scale, recognizing that plots
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Wefe the experimental units.

The Bayesian network for the relationships between the knowns and unknowns and the expres-
sion for the posterior and joint‘distributions is shown in Figure 6.2.5. The process models (equations
6.2.49 - 6.2.50) and data model (equation 6.2.42 - 6.2.44) are linked by latent state 2, the true
average number of lizards on transect ¢ within plot m (Figure 6.2.5). This example shows how
hierarchical models can be used in designed experiments to represent variation at multiple scales,
to estimate unoBservable quantities, to estimate the effect of a treatment, and to properly account

for uncertainty arising from multiple sources.

6.2.4 Multi-level models: functional traits of Neotropical trees mediate effects of light

and size on growth

Relationships between traits of individuals that control bhysiological and reproductive function are
known to shape demographic rates of populations. The relationship between species functional
traits and demography has provided fundamental insight into the compromises underlying life-
history strategies (Westoby et al., 2002; Westoby and Wright, 2006; van Kleunen et al., 2010). In
this example, we feature the work of Riiger et al. (2012) who used a Bayesian hierarchical model to
reveal how functional traits modify the influence of light and size on the growth rate of species of
Neotropical trees.

The growth rate of individual trees within each species was modeled as a power function of

light availability (z1,;) and tree diameter at breast height (2,;), where i indexes individuals and j

‘indexes species. These were assumed to be measured without error. Thus, species were treated as

a group-level variable and there were measurements of individual growth responses and covariates
for individuals within each species. The true growth rate (A;;) of individual i within species j was

modeled using a log transformation to linearize the power function,

9(B,xi5) = Po,j+ B1,5l0g (21,45) + Pa,; log(z2,:5)

Xij ~ lognormal (9(B,%i5),02;) ‘ (6.2.51)

where U;%,j represents the process variance for speciesi j. Another way to look at this that might

be more clear is to use the untransformed model, i.e. the power function for growth, g (8,x;;) =
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Figure 6.2.5: Bayesian network for model of effects of snake predation on lizards modified from Campbell
111 et al. (2011). The data (i) are the number of lizards observed on transect 4 at time ¢ on plot m. The
true number of lizards on transect 7 of plot m is z;,. The parameter ¢, is the probability of detecting a
lizard that is truly present. We model the logit of these probabilities as draws from a normal distribution

with mean pg and variance 0';25. The model ePo+81%an represents the effect of removing predators on the true
number of lizards on a transect.
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eﬁoz'ffijmgfij in which case the true growth rate is A;; ~ lognormal (log (g (B,xi5)) ,crf,,j) where now

o2 ; is the variance of log (\i;).

Functional traits of species (wood density, maximum height, leaf area, seed mass, leaf mass per
area and leaf nutrient content) comprising the data vector w; were used as group level covariates
to model the B coefficients (Figure 6.2.6) in the individual level model using vectors of group level

parameters, o, -y, and 7,

Bo ~ mnormal (ag + w}a,’ ggo) (6.2.52)
Bi ~ mormal (yo + Wiv,55,) (6.2.53)
B2~ mnormal (o + Win,<3,) . (6.2.54)

The process model (equation 6.2.51) was fe]a,ted hierarchically to observations of tree growth
(Figure 6.2.6 Data level) with a normal mixture model (see Section 3.4.5) to reflect uncertainty in

the observations,

[islNij, ¢l = (1 —¢) - normal </\i]-, (;o’l) + ¢ - normal (/\ij, %9—’3> . (6.2.55)
ij i

This is a novel approach because it breaks the observation uncertainty into two parts. Small
routine errors caused by a slightly different placement of the calipers or tape ﬁeasure cause size
dependent uncertainty represented in the standard deviation 00,1, which was assumed to be known
from calibration studies. Large, size-independent errors were caused by missing a decimal place or
recording a number with the wrong tree. These uncertainties were represented in 00,2, also assumed
to be known. The two standard deviations were divided by the number of days elapsed between the
two height measurements of the tree (d;;) used to calculate the observed annual growth rate (vi5)
assuming that the magnitude of errors was proportional to the time between measurements.!?
The full expression for the joint and posterior distributions (Figure 6.2.6) assembles the model
of processes governing the true, unobserved growth of individual trees (equation 6.2.51), the model
explaining species effects on the true growth rate using functional traits (equation 6.2.52) and a

model of the data relating the true growth rate to the observations of growth rate (equation 6.2.55).

21t should be clear to you why di; and o, do not appear in the likelthood. It is because they are treated as known.
If this is not clear, see Box 6.2.1.
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This éxample illustration shows how hierarchical models can be used to deal with two comnion
problems in ecology. We seek to understand how characteristics of species, in this case their func-
tional traits, modify responses of individuals to their local environments. The ecological process we
seek to understand is itself hierarchical. We also require a hierarchical model because we are model-
ing an underlying process (tree growth) based on observations that are not a perfect representation
of the process (diameter at breast height). As in the owl fecundity example, we need to separate
the uncertainty that arises from imperfect observations from uncertainty created by the failure of

our model to represent the process.
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Figure 6.2.6: Hierarchical model of controls on growth of tropical trees (Riiger et al., 2012). Observations
(i5) of the growth rate of an individual ()\;) were made with error. A mixture model (w3105, 02, &, di]
was used to account for two types of error: mistakes made in measurement of individuals that depended
on tree size and size-independent mistakes resulting from errors like missing a decimal place or recording
a number with the wrong tree. The true growth rate was modeled using a power function with individual
traits (diameter at breast height and light availability) as predictor variables. The intercept of the power
function was modeled as a linear function of six species traits, wood density, maximum height, leaf area,

seed mass, leaf mass per area, and leaf nutrient content. Definitions of symbols are given in the text.
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6.2.5 Multiple states, multiple types of data

We now cover an important topic, the use of multiple types of data to estimate parameters and
latent states. Ecologists are accustomed to datasets that contain multiple covariates, but the idea
of multiple responses may be unfamiliar. In Chapter 2 we introduced the idea that models of
relatively high dimension may be needed to represent complex ecological relationships, for example,
the functioning of ecosystems or the dynamics of populations and communities. In these cases
the need to represent interactions and composite forces motivates multiple parameters and states.
Models that have many parameters and that predict more than one latent state will usually require
multiple types of data. Otherwise, their unknowns will not be identifiable.

We first show how to use mtlltiple data sources in a general way before offering a more specific,
example. Assume you have a model g (6p,x) that predicts the central tendency of L latent states'?,
21, .., 2z.. These states might be estimates of fluxes of different molecular forms of carbon and nitro-
gen from soils. The states might be census of individuals of different species in a community and
independently obtained estimates of theivr proportions in the community. They might be tempera-
ture, pH, turbidity, and salinity of an estuary. You have w vectors of data on these states, y1, ..., Yw.
We have a data model h (84,z) that relates the observations to the true value of the latent state.

You might reasonably choose a multivariate distribution for the likelihood, something like:

yi ~ multivariate normal (h (0q4,2;) , Xy) (6.2.56)

z; ~ multivariate normal (g (6p,%;), ;) (6.2.57)

were the ¥ are covariance matrices. In this case, we are modeling the observations and the true
states as vectors following a multivariate normal distributién. The elements of y; and z; can be
correlated and can have their own individual variance terms. There is nothing wrong with this
approach as long as we can plausibly assume that the stochasticity in the latent state and in the
observations can be represented using the normal distribution.

The assumption of normality for all states and responses constrains our options. Often we want

to understand quantities of interest that have different support — some are strictly positive, some

1370 keep our notation compact we are using a static model as an example here, but bear in mind that the model
could just as easily be a dynamic simulation model predicting the central tendency of L states 21¢,...,21,: at time ¢
using model g (6,%:-1,2¢—1). Our example will use this type of model.
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are 0 or 1, some are 0 to 1, some are numbers of individuals in categories.!4 Assuming variance
that is constant with the mean, as is the case with the normal distribution, may not be reasonable.
We often require a more flexible approach.

A great strength of Bayes (or maximum likelihood for that matter) is that we can combine
independent data sets in the same way we combine indedpenent individual observations within a
dataset — by taking their products. This aggregation is justified by the rules of probability (Seption
3.3). Combining data sets using the indepehdent product rule allows us to choose probability
distributions that are appropriate for the support of each random variable, that is, each observation
or each unobserved state. It follows that a general expression for the posterior and joint distributions

exploiting multiple datasets is

w ny

[Gd, Gp,ag,af,,z[yl, ...yL] x HH [ylilh (‘2[1',9‘1) ,ag]l [ng (Hp,xi),az] x  (6.2.58)
I=1i=1

[64,6p,02,02]

where 7 indexes individual observations and states. Note that there is an I subscript on the likélihood,
which indicates that different distributions can be used as needed for the different datasets, realizing,
of course, that we may need some judicious moment matching to transform the means and variances
into the proper parameters. The main point here is to recognize the dual products, one product
taken over datasets and likelihoods (indexed by !) and the other one over individual observations
within a dataset (indexed by 4). Thus, we have used multiple types of data by multiplying the total
likelihood of each dataset. '

We now make equation 6.2.58 more specific by offering a hypothetical example based on age-
or stage-structured population modeling (Caswell, 1988), a widely used approach for modeling
dynamics of populations of animals and plants. Presume we are interested in an organism whose
life history can be described by m stages (or age classes) in the state vector z; that contains the
true number of individuals in each stage at time ¢. Avoiding weedy details, assume we have an
appropriately composed projection matrix A containing‘ fertilities and survival probabilities. We

will notate the survival and fertility parameters in A collectively as 8 so that our deterministic

4 An additional complication arises when the y vectors differ in length.
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model is g (0,2;-1) = Az;_; and our stochastic model of the process is
log (2z:) ~ multivariate normal (log (g (6,2¢-1)) ,o';fI) (6.2.59)

where I is an m x m matrix with ones on the diagonal. The log transform means that we are
portraying each of the 7 stages at time ¢ as a lognormally distributed random variable with mean
agzi’t (the inner product!® of the ith rov& of matrix A with the state vector z;) and process variance
Ug. We could allow for different process variances for each stage and for their covariance by explicitly
specifying a covariance matrix, but we want to keep things simple for this example.

Now assume we have a dataset y; containing total census of individuals in the population
at T times. We also have independent data on the number of individuals in each stage in the
population, Yy, obtained by sampling a subset of the population and classifying each individual
into an appropriate category. The second data set is a matrix because it is composed of a vector
of classification counts for each of the T' time points. We assume for simplicity that there are no
gaps in the two time series of data, but missing data could be modeled if necessary. A reasonable

expression for the posterior and joint distribution is

T
[0,2]y1,Ys] HPoisson (yl,t

E:Z i=1

i Zit) X (6.2.60)

likelihood fo‘rrcensus data

Zy
§ Yo,it, i) X
=1 Zit

i

multinomial <y2,t

likelihood for classification data

multivariate normal (2| log (g (6, 2:-1)), af)I) X

-

o
process model

appropriate priors for 6, z;, and og.

There are several points worth emphasizing here. First look at the likelihood for the census data.
The estimate of the true, unobserved population size is the sum over the m stages, which forms
our estimate of the mean of the distribution of the random variable, y;, the number of individuals

counted at time t. Next focus on the likelihood for the classification data. A vector of proportional

151f we have two vectors u and v with three elements each, then their inner product is u'v = uyv1 + u2v2 + uava.
This is also called the dot product.
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contributions of each stage to the total population is ffl—zz?’ where elements of this vector are
the number in each stage divided by the total. This vector forms the second parameter of the
multinomial likelihood. The first argument is simply the total number of individuals classified.

You may be wondering, “What happened to the observation variance in equation 6.2.587”" Once
again, we need to remember the relationship between parameters and moments (Section 3.4.4). The
variance of the Poisson is the same as its single parameter, the mean. This variance reflects the
idea that if we censused the population on different days or under different conditions, we would
obtain different counts simply because of sampling error.!® In the case of the multinomial, the
observation variance for the estimate of the number of individuals in category yg.4t is nepit(l — pit)
where n = ZZ‘__l Y24t and p; = fﬁj}—; So the observation variance is implicit in the values of the
parameters of the multinomial.

Recall that we calculate the total probability of the data conditional on a parameter (i.e., the
total likelihood) from the product of the probabilities of individual observations (equation 4.1.5).
This is what we are doing multiplying across the i observations in individual likelihoods above.
The products of these total likelihoods for the two datasets gives us the combined probability of
the two data sets conditional on the values of latent state z. We not limited to two likelihoods, we
might have many. Moreover, although we must assume independence here to keep things simple,
non-independent datasets could be used as long as we properly modeled the dependence among
them, a topic that is beyond the scope of this book, but that could be tackled after mastering the

principles we present.
6.3 When are observation and process variance identifiable?

We have spoken frequently about partitioning uncertainty by separately modeling process variance
and observation variance. There are conditions when this is possible and when it is not. To
understand this idea we need to introduce the statistical term identifiability. For inference on a
model to be possible, the parameters in the model must be identifiable, which loosely means that
it is possible to learn the true value of this model’s parameter(s) conditional on an infinite number

of observations. In practice, this means that different values of the parameter(s) must generate

18 Actually, it would be wise to replicate the census for each ¢ so that we could explicitly estimate the observation
variance. We are ignoring the possibility of bias arising from over or undercounting to keep this example simple. See
Section 6.2.3 for an example where we account for bias in the counts.
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different probability distributions of the observable variables.
Consider a general, hierarchical expression for the posterior and joint distribution of observations

and parameters,

n
[H,Jg,agiy] x H [y,-[zi,ag] [zilg(e,xi),og] [9,03,03] (6.3.1)
g==1

where g{6,x;) is a deterministic model of an ecological process, y; is an observation on the process,
ag is the process variance, and o2 is the observation variance that in this case arises purely from
sampling.

We can identify 022, and o2 if and only if one or more of the following conditions hold:

1. We have replications on the observations for each of the unknown states, i.e.,

n J
{9,05,03{5{] x H H [yijlzi,ag] [2]9 (8, %) ,cr?,] [9,05,03] , (6.3.2)
i=1 j=1

where j indexes multiple observations for each i. Obtaining replications, of course, requires
thoughtful design to achieve, which is a great reason for writing down your model as part of
the design of your research. Examples 6.2.2, 6.2.3, and 6.2.4 all had replication at the data

level.

2. Your model has strong and differing "structure" in the data and process models. Structure
can mean very different distributions for the process and observation models, as in example
6.2.1 above, or it can mean strong and differing spatial or temporal structure in the data or
the process, a somewhat advanced topic that is beyond the scope of this book. See Cressie

and Wikle (2011) for a full treatment.

3. Your model has strongly informative priors on parameters, particularly the variance compo-
nents. These could come from previous studies as illustrated in example 6.2.4, again illustrat-

ing the value of informative priors (Section 5.4).
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2527 To illustrate a model where the two variance components would probably not be identifiable,

n
[9,0§,J§|y] o Hnormal(yi{zi,og)norrnal(zi|g(9,xi),ag)>< (6.3.3)

i=1 d

v
variances not identifiable

inverse gamma (o2 .001,.001) inverse gamma (o2) x
& P 0

appropriate priors on 6.

a8 Note that there is no replication and the distributions for the process and the data are the same.
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