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Abstract

Stan is a probabilistic programming language for specifying statistical models. A Stan
program imperatively defines a log probability function over parameters conditioned on
specified data and constants. As of version 2.2.0, Stan provides full Bayesian inference
for continuous-variable models through Markov chain Monte Carlo methods such as the
No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized
maximum likelihood estimates are calculated using optimization methods such as the
BroydenâĂŞFletcherâĂŞGoldfarbâĂŞShanno algorithm.

Stan is also a platform for computing log densities and their gradients and Hessians,
which can be used in alternative algorithms such as variational Bayes, expectation propa-
gation, and marginal inference using approximate integration. To this end, Stan is set up
so that the densities, gradients, and Hessians, along with intermediate quantities of the
algorithm such as acceptance probabilities, are easily accessible.

Stan can be called from the command line, through R using the RStan package, or
through < Python using the PyStan package. All three interfaces support sampling or
optimization-based inference and analysis, and RStan and PyStan also provide access to
log probabilities, gradients, Hessians, and I/O transforms.
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1. Why Stan?

We did not set out to build Stan as it currently exists.1 Our original goal was to apply full
Bayesian inference to the sort of multilevel generalized linear models discussed in Part II
of (Gelman and Hill 2007), which are structured with grouped and interacted predictors at
multiple levels, hierarchical covariance priors, nonconjugate coefficient priors, latent effects as
in item-response models, and varying output link functions and distributions.

These models turned out to be a challenge for existing general purpose inference software.
A direct encoding in BUGS (Lunn, Thomas, and Spiegelhalter 2000; Lunn, Spiegelhalter,
Thomas, and Best 2009; Lunn, Jackson, Best, Thomas, and Spiegelhalter 2012) or JAGS (Plum-
mer 2003) can grind these tools to a halt. We began by adding custom vectorized logistic
regressions to JAGS using C++ to overcome the cost of interpretation. Although this is much
faster than looping in JAGS, it quickly became clear that the root of the problem was the
slow convergence of conditional sampling when parameters were highly correlated in the pos-
terior, as for time-series models and hierarchical models with interacted predictors. We finally
realized we needed a better sampler, not a more efficient implementation of Gibbs sampling.

We briefly considered trying to tune proposals for a random-walk Metropolis-Hastings sam-
pler, but that seemed too problem specific and not even necessarily possible without some
kind of adaptation rather than a global tuning of the proposals.

We were hearing more about Hamiltonian Monte Carlo (HMC) sampling, which appeared
promising but was also problematic in that the Hamiltonian dynamics simulation requires the
gradient of the log posterior. Although not difficult in theory for most functions, computing
these gradients by hand on a model-by-model basis is very tedious and error prone. That is
when we discovered reverse-mode algorithmic differentiation, which, given a templated C++
function for the log posterior, automatically computes its analytic gradient up to machine
precision accuracy in only a few multiples of the time to evaluate the log probability function
itself.2 We explored existing algorithmic differentiation packages with open licenses such as
RAD (Gay 2005) and its repackaging in the Sacado module of the Trilinos toolkit, and the
CppAD package of the COIN-OR toolkit (Bell and Burke 2008). Both packages, however,
supported few special functions (e.g., probability functions, log gamma, inverse logit) or linear
algebra operations (e.g., Cholesky decompositions, matrix division), and neither are easily or
modularly extensible.

Consequently we built our own reverse-mode algorithmic differentiation package. At that
point, we ran into the problem that we could not just plug in the probability functions from
a package like Boost because they weren’t templated generally enough across all arguments.
Rather than pay the price of promoting floating point values to algorithmic differentiation
variables, we wrote our own fully templated probability functions and other special functions.

Next, we integrated the C++ package Eigen for matrix operations and linear algebra func-
tions. Eigen makes extensive use of expression templates for lazy evaluation and the curiously
recurring template pattern (CRTP) to implement concepts without virtual function calls; Van-

1Stan’s home page, http://mc-stan.org/, links to the Stan manual, example models including translations
of the BUGS examples and the models from (Gelman and Hill 2007), getting started instructions and full
documentation for Stan’s interfaces for the command line shell (CmdStan), Python (PyStan), and R (RStan),
and the source code repositories and issue trackers.

2Hessian matrices (i.e., all second order derivatives) are more expensive to calculate; each row corresponds
to a parameter and is filled by the gradient of the derivative of the log probability function with respect to the
parameter.

http://mc-stan.org/
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devoorde and Josuttis (2002) provide a complete description of template metaprogramming
techniques. Unfortunately, we ran into the same problem with Eigen as with the existing
probability libraries—it doesn’t support mixed operations of algorithmic differentiation vari-
ables and primitives like double. Although we initially began by promoting floating-point
vectors to algorithmic differentiation variables, we later completely rewrote mixed-mode op-
erations like multiplying a data matrix by a parameter vector. To compute derivatives of
matrix operations such as division and inverse, we implemented specialized derivatives using
the rules described by Giles (2008).

At this point, we could fit models coded directly in C++ on top of the pre-release versions of
the Stan application programming interface (API). Seeing how well this all worked, we set our
sights on the generality and ease of use of BUGS and designed a modeling language in which
statisticians could write their models in familiar notation that could be transformed to efficient
C++ code before being compiled into an efficient executable program. Although we started
with the target of specifying directed graphical models, our first implementation turned out
to be a more general imperative form of specifying log probability functions; BUGS models
could be translated line for line, but the Stan language also supports much richer imperative
constructs like conditionals, while loops, and local variables. This paper is primarily about
the Stan language and how it can be used to specify statistical models.

The next problem we ran into when we started implementing richer models was variables
with constrained support, such as positive variables, simplexes, and covariance matrices.
Efficient implementation of these constraints required the introduction of typed variables
which automatically transformed to unconstrained support with suitable adjustments to the
log probability from the log absolute Jacobian determinant of the inverse transforms.

Even with the prototype compiler generating models, we still faced a major hurdle for ease
of use. The efficiency of HMC is very sensitive to two tuning parameters, the discretization
interval (i.e., step size) and the total simulation time (i.e., number of steps). The interval
size parameter could be tuned during warm-up based on Metropolis rejection rates, but the
number of steps proved difficult to tune without sacrificing the detailed balance of the sam-
pler. This led to the development of the No U-Turn (NUTS) sampler (Hoffman and Gelman
2011). Roughly speaking, NUTS builds a tree of possible samples by randomly simulating
Hamiltonian dynamics both forwards and backwards in time until the combined trajectory
turns back on itself. Once the trajectory has terminated, a new sample is drawn from the
tree. In its original version, NUTS also estimates a step size during warmup based on a target
acceptance probability.

We thought we were home free, but when we measured the speed of some BUGS examples
versus Stan we were very disappointed. BUGS’s very first example model, Rats, ran more
than an order of magnitude faster in JAGS than in Stan. Rats is a tough test case because
the conjugate priors and lack of posterior correlations make it an ideal candidate for efficient
Gibbs sampling. Realizing that we were doing redundant calculations, we wrote a vectorized
form of the normal distribution for multiple variates with the same mean and scale, which sped
things up a bit. Performance was lacking until we finally figured out how to both eliminate
redundant calculations and partially evaluate the gradients using a combination of expression
templates and metaprogramming.

When we attempted to fit a time-series model, we found that normalizing the data to unit
sample mean and variance sped up the fits by an order of magnitude. In hindsight this
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data {

int<lower=0> N; // N >= 0

int<lower=0,upper=1> y[N]; // y[n] in { 0, 1 }

}

parameters {

real<lower=0,upper=1> theta; // theta in [0, 1]

}

model {

theta ~ beta(1,1); // prior

y ~ bernoulli(theta); // likelihood

}

Figure 1: Model for estimating a Bernoulli parameter.

isn’t surprising, as the performance of the numerical simulation in HMC scales with the
variation of the parameter scales. In Stan 1.0 we introduced an adaptive diagonal metric (mass
matrix) into our HMC implementations that allowed the parameter scales to be standardized
automatically; Stan 2.0 added an option to estimate a dense metric (mass matrix) and a full
covariance standardization of the posterior.

Because the diagonal and dense metrics perform only a global standardization, the perfor-
mance of Stan in models where the relative parameter scales varies by location, such as
hierarchical and latent models, can suffer (hierarchical modeling is covered in Section 3.1 and
reparameterizations to speed it up in Section 3.11). Riemannian manifold Hamiltonian Monte
Carlo (RHMC) introduces a location-dependent metric that can overcome these final hurdles
(Girolami and Calderhead 2011); Stan has a prototype implementation of RHMC based on
the SoftAbs metric of (Betancourt 2012), using a generalization of NUTS to Riemannian
manifolds (Betancourt 2013).

2. Overview

This section describes the use of Stan from the command line for estimating a Bayesian model
using both MCMC sampling for full Bayesian inference and optimization to provide a point
estimate at the posterior mode.

2.1. Model for estimating a Bernoulli parameter

Consider estimating the chance of success parameter for a Bernoulli distribution based on a
sequence of observed binary outcomes. Figure 1 provides an implementation of such a model
in Stan.3 The model treats the observed binary data, y[1],...,y[N], as independent and
identically distributed, with success probability theta. The vectorized likelihood statement
can also be coded using a loop as in BUGS, although it will run more slowly than the vectorized
form:

for (n in 1:N)

3This model is available in the Stan source distribution in src/models/basic_estimators/bernoulli.stan.
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y[n] ~ bernoulli(theta);

A beta(1,1) (i.e., uniform) prior is placed on theta, although there is no special behavior
for conjugate priors in Stan. The prior could be dropped from the model altogether because
parameters start with uniform distributions on their support, here constrained to be between
0 and 1 in the parameter declaration for theta.

2.2. Data format

Data for running Stan from the command line can be included in R dump format.4 For
example, 10 observations for the model in Figure 1 could be encoded as5

N <- 10

y <- c(0,1,0,0,0,0,0,0,0,1)

This defines the contents of two variables, an integer N and a 10-element integer array y. The
variable N is declared in the data block of the program as being an integer greater than or
equal to zero; the variable y is declared as an integer array of size N with entries between 0
and 1 inclusive.

In RStan and PyStan, data can also be passed directly through memory without the need to
read or write to a file.

2.3. Compling the model

After a C++ compiler and make are installed,6 the Bernoulli model in Figure 1 can be trans-
lated to C++ and compiled with a single command. First, the directory must be changed to
$stan, which we use as a shorthand for the directory in which Stan was unpacked.7

> cd $stan

> make src/models/basic_estimators/bernoulli

This produces an executable file bernoulli (bernoulli.exe on Windows) on the same path
as the model. Forward slashes can be used with make on Windows.

2.4. Running the sampler

Command to sample from the model

The executable can be run with default options by specifying a path to the data file. The
first command in the following example changes the current directory to that containing the

4A JSON interface for structured data input and output is currently under development.
5This data file is provided with the Stan distrbution in file src/models/basic_estimators/bernoulli.R.

stan.
6Appropriate versions are built into Linux. The RTools package suffices for Windows; it is available from

http://cran.r-project.org/bin/windows/Rtools/. The Xcode package contains everything needed for the
Mac; see https://developer.apple.com/xcode/ for more information.

7Before the first model is built, make must build the model translator (target bin/stanc) and posterior
summary tool (target bin/print), along with an optimized version of the C++ library (target bin/libstan.a).
Please be patient and consider make option -j2 or -j4 (or higher) to run in the specified number of processes
if two or four (or more) computational cores are available.

http://cran.r-project.org/bin/windows/Rtools/
https://developer.apple.com/xcode/
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model, which is where the data resides and where the executable is built. From there, the
path to the data is just the file name bernoulli.data.R.

> cd $stan/src/models/basic_estimators

> ./bernoulli sample data file=bernoulli.data.R

For Windows, the ./ before the command should be removed.

Terminal output from sampler

The output is as follows, starting with a summary of the command-line options used, including
defaults; these are also written into the samples file as comments.

method = sample (Default)

sample

num_samples = 1000 (Default)

num_warmup = 1000 (Default)

save_warmup = 0 (Default)

thin = 1 (Default)

adapt

engaged = 1 (Default)

gamma = 0.050000000000000003 (Default)

delta = 0.80000000000000004 (Default)

kappa = 0.75 (Default)

t0 = 10 (Default)

init_buffer = 75 (Default)

term_buffer = 50 (Default)

window = 25 (Default)

algorithm = hmc (Default)

hmc

engine = nuts (Default)

nuts

max_depth = 10 (Default)

metric = diag_e (Default)

stepsize = 1 (Default)

stepsize_jitter = 0 (Default)

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 4294967295 (Default)

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

Gradient evaluation took 4e-06 seconds
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1000 transitions using 10 leapfrog steps per transition would take

0.04 seconds.

Adjust your expectations accordingly!

Iteration: 1 / 2000 [ 0%] (Warmup)

Iteration: 100 / 2000 [ 5%] (Warmup)

...

Iteration: 1000 / 2000 [ 50%] (Warmup)

Iteration: 1001 / 2000 [ 50%] (Sampling)

...

Iteration: 2000 / 2000 [100%] (Sampling)

Elapsed Time: 0.00932 seconds (Warm-up)

0.016889 seconds (Sampling)

0.026209 seconds (Total)

The sampler configuration parameters are echoed, here they are all default values other than
the data file. These parameters may be set on the command line.

Help

A description of all configuration parameters including default values and constraints is avail-
able by executing

> ./bernoulli help-all

The sampler and its configuration are described at greater length in the manual (Stan Devel-
opment Team 2014).

Samples file output

The output CSV file, written by default to output.csv, starts with a summary of the con-
figuration parameters for the run.

# stan_version_major = 2

# stan_version_minor = 1

# stan_version_patch = 0

# model = bernoulli_model

# method = sample (Default)

# sample

# num_samples = 1000 (Default)

# num_warmup = 1000 (Default)

# save_warmup = 0 (Default)

# thin = 1 (Default)

# adapt

# engaged = 1 (Default)

# gamma = 0.050000000000000003 (Default)

# delta = 0.80000000000000004 (Default)
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# kappa = 0.75 (Default)

# t0 = 10 (Default)

# init_buffer = 75 (Default)

# term_buffer = 50 (Default)

# window = 25 (Default)

# algorithm = hmc (Default)

# hmc

# engine = nuts (Default)

# nuts

# max_depth = 10 (Default)

# metric = diag_e (Default)

# stepsize = 1 (Default)

# stepsize_jitter = 0 (Default)

# id = 0 (Default)

# data

# file = bernoulli.data.R

# init = 2 (Default)

# random

# seed = 847896134

# output

# file = output.csv (Default)

# diagnostic_file = (Default)

# refresh = 100 (Default)

Stan’s behavior is fully specified by these configuration parameters. By using the same version
of Stan and these configuration parameters, exactly the same output file can be reproduced.
The pseudorandom numbers generated by the sampler are fully determined by the seed (here
randomly generated based on the time of the run, with value 847896134) and the identifier
(here 0). The identifier is used to advance the underlying pseudorandom number generator a
sufficient number of values that using multiple chains with the same seed and different iden-
tifiers will draw from different subsequences of the pseudorandom number stream determined
by the seed.

The output contiues with a CSV header naming the columns of the output. For the default
NUTS sampler in Stan 2.2.0, these are

lp__,accept_stat__,stepsize__,treedepth__,n_divergent__,theta

The values for lp__ indicate the log probability (up to an additive constant). The column
headed by accept_stat__ provides the Metropolis/slice acceptance statistic for each itera-
tion.8 The column stepsize__ indicates the step size (i.e., time interval) of the simulated
trajectory, while the column treedepth__ gives the tree depth for NUTS, defined as the log
base 2 of the total number of steps in the trajectory. The rest of the header will be the names
of parameters; in this example, theta is the only parameter.

8Acceptance is the usual notion for a Metropolis sampler such as HMC (Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller 1953). For NUTS, the acceptance statistic is defined as the average acceptance probabilities
of all possible samples in the proposed tree; NUTS itself uses a slice sampling algorithm for rejection (Neal
2003; Hoffman and Gelman 2011).
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Next, the results of adaptation are printed as comments.

# Adaptation terminated

# Step size = 0.783667

# Diagonal elements of inverse mass matrix:

# 0.517727

By default, Stan uses the NUTS sampler with a diagonal mass matrix. The mass matrix is
estimated, roughly speaking, by regularizing the sample covariance of the latter half of the
warmup samples; see (Stan Development Team 2014) for full details. A dense mass matrix
may also be estimated, or the mass matrix may be set to the unit matrix.

The rest of the file contains samples, one per line, matching the header; here the parameter
theta is the final value printed on each line, and each line corresponds to a sample. The
warmup samples are not included by default, but may be included with the appropriate
command-line invocation of the executable. The file ends with comments reporting the elapsed
time.

-7.19297,1,0.783667,1,0,0.145989

-8.2236,0.927238,0.783667,1,0,0.0838792

...

-7.48489,0.738509,0.783667,0,0,0.121812

-7.40361,0.995299,0.783667,1,0,0.407478

-9.49745,0.771026,0.783667,2,0,0.0490488

-9.11119,1,0.783667,0,0,0.0572588

-7.20021,0.979883,0.783667,1,0,0.14527

# Elapsed Time: 0.010849 seconds (Warm-up)

# 0.01873 seconds (Sampling)

# 0.029579 seconds (Total)

It is evident from the values sampled for theta in the last column that there is a high degree
of posterior uncertainty in the estimate of theta from the ten data points in the data file.

The log probabilities reported in the first column include not only the model log probabili-
ties but also the Jacobian adjustment resulting from the transformation of the variables to
unconstrained space. Here, that is the absolute derivative of the inverse logistic function; see
(Stan Development Team 2014) for full details on all of the transforms and their Jacobians.

2.5. Sampler output analysis

Before performing output analysis, we recommend generating multiple independent chains
in order to more effectively monitor convergence; see (Gelman and Rubin 1992) for more
analysis. Three more chains of samples can be created as follows.

./bernoulli sample data file=bernoulli.data.R random seed=847896134 \

id=1 output file=output1.csv

./bernoulli sample data file=bernoulli.data.R random seed=847896134 \

id=2 output file=output2.csv
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Inference for Stan model: bernoulli_model

4 chains: each with iter=(1000,1000,1000,1000); warmup=(0,0,0,0);

thin=(1,1,1,1); 4000 iterations saved.

Warmup took (0.0108, 0.0130, 0.0110, 0.0110) seconds, 0.0459 seconds total

Sampling took (0.0187, 0.0190, 0.0168, 0.0176) seconds, 0.0722 seconds total

Mean MCSE StdDev 5% 50% 95%

lp__ -7.28 1.98e-02 0.742 -8.85e+00 -6.99 -6.75

accept_stat__ 0.909 4.98e-03 0.148 5.70e-01 0.971 1.00

stepsize__ 0.927 7.45e-02 0.105 7.84e-01 1.00 1.05

treedepth__ 0.437 1.03e-02 0.551 0.00e+00 0.000 1.00

n_divergent__ 0.000 0.00e+00 0.000 0.00e+00 0.000 0.000

theta 0.254 3.25e-03 0.122 7.58e-02 0.238 0.479

N_Eff N_Eff/s R_hat

lp__ 1404 19447 1.00e+00

accept_stat__ 887 12297 1.02e+00

stepsize__ 2.00 27.7 5.56e+13

treedepth__ 2856 39572 1.01e+00

n_divergent__ 4000 55424 nan

theta 1399 19382 1.00e+00

Figure 2: Output of bin/print for the Bernoulli estimation model in Figure 1.

./bernoulli sample data file=bernoulli.data.R random seed=847896134 \

id=3 output file=output3.csv

These calls illustrate how additional parameters are specified directly on the command line
following the hierarchy given in the output. The backslash (\) at the end of each line indicates
that the command continues on the last line; a caret (^) should be used in Windows.

The chains can be safely run in parallel under different processes; details of parallel execution
depend on the operating system and the shell or terminal program. Note that, although the
same seed is used for each chain, the random numbers will in fact be independent as the chain
identifier is used to skip the pseudorandom number generator ahead. See Section 9 for more
information.

Stan supplies a command-line program bin/print to summarize the output of one or more
MCMC chains. Given a directory containing output from sampling,

> ls output*.csv

output.csv output1.csv output2.csv output3.csv

posterior summaries are printed using

> $stan/bin/print output*.csv
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The output is shown in Figure 2.9 Each row of the output summarizes a different value whose
name is provided in the first column. These correspond to the columns in the output CSV
files. The analysis includes estimates of the posterior mean (Mean) and standard deviation
(StdDev). The median (50%) and 90% posterior interval (5%, 95%) are also displayed.

The remaining columns in the output provide an analysis of the sampling and its efficiency.
The convergence diagnostic that is built into the bin/print command is the estimated po-
tential scale reduction statistic R̂ (Rhat); its value should be close to 1.0 when the chains have
all converged to the same stationary distribution. Stan uses a more conservative version of R̂
than is usual in packages such as Coda (Plummer, Best, Cowles, and Vines 2006), first split-
ting each chain in half to diagnose nonstationary chains; see (Gelman, Carlin, Stern, Rubin,
Dunson, and Vehtari 2013) and (Stan Development Team 2014) for detailed definitions.

The column N_eff is the number of effective samples in a chain. Because MCMC methods
produce correlated samples in each chain, estimates such as posterior means are not as ac-
curate as they would be with truly independent samples. The number of effective samples
is an estimate of the number of independent samples that would lead to the same accuracy.
The Monte Carlo standard error (MCSE) is an estimate of the error in estimating the pos-
terior mean based on dividing the posterior standard deviation estimate by the square root
of the number of effective samples (sd / sqrt(n_eff)). Geyer (2011) provides a thorough
introduction to effective sample size and MCSE estimation. Stan uses the more conservative
estimates based on both within-chain and cross-chain convergence; see (Gelman et al. 2013)
and (Stan Development Team 2014) for motivation and definitions.

Because estimation accuracy is governed by the square root of the number of effective samples,
effective samples per second (or seconds per effective sample) is the most relevant statistic for
comparing the efficiency of sampler implementations. Compared to BUGS and JAGS, Stan is
often relatively slow per iteration but relatively fast per effective sample.

In this example, the estimated number of effective samples per parameter (n_eff) is 1399,
which far more than we typically need for inference. The posterior mean here is estimated
to be 0.254 with an MCSE of 0.00325. Because the model is conjugate, the exact posterior
is known to be p(θ|y) = Beta(3, 9). Thus the posterior mean of θ is 3/(3 + 9) = 0.25 and the
posterior mode of θ is (3− 1)/(3 + 9− 2) = 0.2.

2.6. Posterior mode estimates

Posterior modes with optimization

The posterior mode of a model can be found by using one of Stan’s built-in optimizers. The
following command invokes optimization for the Bernoulli model using all default configura-
tion parameters.

> ./bernoulli optimize data file=bernoulli.data.R

9Aligning columns when printing rows of varying scales presents a challenge. For each column, the program
calculates the the maximum number of digits required to print an entry in that column with the specified
precision. For example, a precision of 2 for the number -0.000012 requires nine characters (-0.000012) to print
without scientific notation versus seven digits with (-1.2e-5). If the discrepancy is above a fixed threshold,
scientific notation is used. Compare the results in the mean column versus the sd column.
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method = optimize

optimize

algorithm = bfgs (Default)

bfgs

init_alpha = 0.001 (Default)

tol_obj = 1e-08 (Default)

tol_grad = 1e-08 (Default)

tol_param = 1e-08 (Default)

iter = 2000 (Default)

save_iterations = 0 (Default)

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 4294967295 (Default)

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

initial log joint probability = -12.4873

Iter log prob ||dx|| ||grad|| alpha # evals Notes

7 -5.00402 8.61455e-07 1.25715e-10 1 10

Optimization terminated normally:

Convergence detected: change in objective function was below

tolerance

The final lines of the output indicate normal termination after seven iterations by convergence
of the objective function (here the log probability) to the default tolerance of 1e-08. The final
log probability (log prob), length of the difference between the current iteration’s value of
the parameter vector and the previous value (||dx||), and the length of the gradient vector
(||grad||).

The optimizer terminates when any of the log probability, gradient, or parameter values are
within their specified tolerance. The default optimizer uses the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm, a quasi-Newton method which employs exactly computed gra-
dients and an efficient approximation to the Hessian; see (Nocedal and Wright 2006) for a
textbook exposition of the BFGS algorithm.

Optimizer output file

By default, optimizations results are written into output.csv, which is a valid CSV file.

# stan_version_major = 2

# stan_version_minor = 1

# stan_version_patch = 0

# model = bernoulli_model
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# method = optimize

# optimize

# algorithm = bfgs (Default)

# bfgs

# init_alpha = 0.001 (Default)

# tol_obj = 1e-08 (Default)

# tol_grad = 1e-08 (Default)

# tol_param = 1e-08 (Default)

# iter = 2000 (Default)

# save_iterations = 0 (Default)

# id = 0 (Default)

# data

# file = bernoulli.data.R

# init = 2 (Default)

# random

# seed = 777510854

# output

# file = output.csv (Default)

# diagnostic_file = (Default)

# refresh = 100 (Default)

lp__,theta

-5.00402,0.2000000000125715

As with the sampler output, the configuration of the optimizer is dumped as CSV comments
(lines beginning with #). Then there is a header, listing the log probability, lp__, and the
single parameter name, theta. The next line shows that the posterior mode for theta is
0.2000000000125715, matching the true posterior mode of 0.20 very closely.

Optimization is carried out on the unconstrained parameter space, but without the Jaco-
bian adjustment to the log probability. This ensures modes are defined with respect to the
constrained parameter space as declared in the parameters block and used in the model spec-
ification. The need to suppress the Jacobian to match the scaling of the declared parameters
highlights the sensitivity of posterior modes to parameter transforms.

2.7. Diagnostic mode

Stan provides a diagnostic mode that evaluates the log probability and gradient calculations
at the initial parameter values (either user supplied or generated randomly based on the
specified or default seed).

> ./bernoulli diagnose data file=bernoulli.data.R

method = diagnose

diagnose

test = gradient (Default)

gradient

epsilon = 9.9999999999999995e-07 (Default)

error = 9.9999999999999995e-07 (Default)
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id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 4294967295 (Default)

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

TEST GRADIENT MODE

Log probability=-6.74818

param idx value model finite diff error

0 -1.1103 0.0262302 0.0262302 -3.81445e-10

Here, a random initialization is used and the initial log probability is -6.74818 and the single
parameter theta, here represented by index 0, has a value of -1.1103 on the unconstrained
scale. The derivative supplied by the model and by a finite differences calculation are the same
to within -3.81445e-10. Non-finite log probability values or derivatives indicate a problem
with the model in terms of constraints on parameter values or function inputs being violated,
boundary conditions in functions, and sometimes overflow or underflow issues with floating-
point calculations. Errors between the model’s gradient calculation and finite differences can
indicate a bug in Stan’s algorithmic differentiation for a function in the model.

3. Models

In the rest of this paper, we will concentrate on the modeling language and how compiled
models are executed. These details are the same whether a Stan model is being used by one
of the built-in samplers or optimizers or being used externally by a user-defined sampler or
optimizer.

3.1. Example: hierarchical model, with inference

(Gelman et al. 2013, Section 5.1) define a hierarchical model of the incidence of tumors in
rats in control groups across trials; a very similiar model is defined for mortality rates in
pediatric surgeries across hospitals in (Lunn et al. 2000, 2009, Examples, Volume 1). A Stan
implementation is provided in Figure 3. In the rest of this section, we will walk through what
the meaning of the various blocks are for the execution of the model.

3.2. Data block

A Stan program starts with an (optional) data block, which declares the data required to
fit the model. This is a very different approach to modeling and declarations than in BUGS
and JAGS, which determine which variables are data and which are parameters at run time
based on the shape of the data input to them. These declarations make it possible to compile
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data {

int<lower=0> J; // number of items

int<lower=0> y[J]; // number of successes for j

int<lower=0> n[J]; // number of trials for j

}

parameters {

real<lower=0,upper=1> theta[J]; // chance of success for j

real<lower=0,upper=1> lambda; // prior mean chance of success

real<lower=0.1> kappa; // prior count

}

transformed parameters {

real<lower=0> alpha; // prior success count

real<lower=0> beta; // prior failure count

alpha <- lambda * kappa;

beta <- (1 - lambda) * kappa;

}

model {

lambda ~ uniform(0,1); // hyperprior

kappa ~ pareto(0.1,1.5); // hyperprior

theta ~ beta(alpha,beta); // prior

y ~ binomial(n,theta); // likelihood

}

generated quantities {

real<lower=0,upper=1> avg; // avg success

int<lower=0,upper=1> above_avg[J]; // true if j is above avg

int<lower=1,upper=J> rnk[J]; // rank of j

int<lower=0,upper=1> highest[J]; // true if j is highest rank

avg <- mean(theta);

for (j in 1:J)

above_avg[j] <- (theta[j] > avg);

for (j in 1:J) {

rnk[j] <- rank(theta,j) + 1;

highest[j] <- rnk[j] == 1;

}

}

Figure 3: Hierarchical binomial model with posterior inferences, coded in Stan.
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Stan to much more efficient code.10 Missing data models may still be coded in Stan, but
the missing values must be declared as parameters; see (Stan Development Team 2014) for
examples of missing data, censored data, and truncated data models.

In the model in Figure 3, the data block declares an integer variable J for the number of
groups in the hierarchical model. The arrays y and n have size J, with y[j] being the number
of positive outcomes in n[j] trials.

All of these variables are declared with a lower-bound constraint restricting their values to
be greater than or equal to zero. Stan’s constraint language is not strong enough to restrict
each y[j] to be less than or equal to n[j].

The data for a Stan model is read in once as the C++ object representing the model is
constructed. After the data is read in, the constraints are validated. If the data does not
satisfy the declared constraints, the model will throw an exception with an informative error
message, which is displayed to the user in the command-line, R, and Python interfaces.

3.3. Transformed data block

The model in Figure 3 does not have a transformed data block. A transformed data block
may be used to define new variables that can be computed based on the data. For example,
standardized versions of data can be defined in a transformed data block or Bernoulli trials can
be summed to model as binomial. Any constant data can also be defined in the transformed
data block.

The transformed data block starts with a sequence of variable declarations and continues with
a sequence of statements defining the variables. For example, the following transformed data
block declares a vector x_std, then defines it to be the standardization of x.

transformed data {

vector[N] x_std;

x_std <- (x - mean(x)) / sd(x);

}

The transformed data block is executed during construction, after the data is read in. Any
data variables declared in the data block may be used in the variable declarations or state-
ments. Transformed data variables may be used after they are declared, although care must
be taken to ensure they are defined before they are used. Any constraints declared on trans-
formed data variables are validated after all of the statements are executed, with execution
terminating with an informative error message at the first variable with an invalid value.

3.4. Parameter block

The parameter block in the program in Figure 3 defines three parameters. The parameter
theta[j] represents the probability of success in group j. The prior on each theta[j] is pa-
rameterized by a prior mean chance of success lambda and prior count kappa. Both theta[j]

and lambda are constrained to fall between zero and one, whereas lambda is constrained to
be greater than or equal to 0.1 to match the support of the Pareto hyperprior it receives in
the model block.

10The speedup is because coding data variables as double types in C++ is much faster than promoting all
values to algorithmic differentiation class variables.
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The parameter block is executed every time the log probability is evaluated. This may be
multiple times per iteration of a sampling or optimization algorithm. Furthermore, different
samplers and optimizers use different instantiations of the log probability function depending
on the form and order of the derivative information they require; see Section 8 for details.

Implicit change of variables to unconstrained space

The probability distribution defined by a Stan program is intended to have unconstrained sup-
port (i.e., no points of zero probabilty), which greatly simplifies the task of writing samplers
or optimizers. To achieve unbounded support, variables declared with constrained support
are transformed to an unconstrained space. For instance, variables declared on [0, 1] are log-
odds transformed and non-negative variables declared to fall in [0,∞) are log transformed.
More complex transforms are required for simplexes (a reverse stick-breaking transform) and
covariance and correlation matrices (Cholesky factorization). The dimensionality of the re-
sulting probabilty function may change as a result of the transform. For example, a K ×K
covariance matrix requires only

(K
2

)
+K unconstrained parameters, and a K-simplex requires

only K − 1 unconstrained parameters.

The unconstrained parameters over which the model is defined are inverse transformed back
to their constrained forms before executing the model code. To account for the change of
variables, the log absolute Jacobian determinant of the inverse transform is added to the
overall log probabilty function.11 The gradients of the log probabilty function exposed include
the Jacobian term.

There is no validation required for the parameter block because the variable transforms are
guaranteed to produce values that satisfy the declared constraints.

3.5. Transformed parameters block

The transformed parameters block allows users to define transforms of parameters within
a model. Following the model in (Gelman et al. 2013), the example in Figure 3 uses the
transformed parameter block to define transformed parameters alpha and beta for the prior
success and failure counts to use in the beta prior for theta.

Following the same convention as the transformed data block, the (optional) transformed pa-
rameter block begins with declarations of the transformed parameters, followed by a sequence
of statements defining them. Variables from previous blocks as well as the transformed pa-
rameters block may be used. In the example, the prior success and failure counts alpha and
beta are defined in terms of the prior mean lambda and total prior count kappa.

The transformed parameter block is executed after the parameter block. Constraints are val-
idated after all of the statements defining the transformed parameters have executed. Failure
to validate a constraint results in an exception being thrown, which halts the execution of
the log probability function. The log probability function can be defined to return negative
infinity or a special not-a-number value.

If transformed parameters are used on the left-hand side of a sampling statement, it is up to
the user to add the appropriate log Jacobian adjustment to the log probability accumulator.

11For optimization, the Jacobian adjustment is suppressed to guarantee the optimizer finds the maximum
of the log probability function on the constrained parameters. The calculation of the Jacobian is controlled by
a template parameter in the C++ code generated for a model.
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For instance, a lognormal variate could be generated as follows without the built-in lognormal

density function using the normal density as

parameters {

real<lower=0> u;

...

transformed parameters {

real v;

v <- log(u);

increment_log_prob(u); // log absolute Jacobian adjustment

}

model {

v ~ normal(0,1);

}

The transorm is f(u) = log u, the inverse transform is f−1(v) = exp v, so the absolute log
Jacobian is | ddv exp v| = exp v = u. Whenever a transformed parameter is used on the left side
of a sampling statement, a warning is printed to remind the user of the need for a Jacobian
adjustment for the change of variables.

Values of transformed parameters are saved in the output along with the parameters. As an
alternative, local variables can be used to define temporary values that do not need to be
saved.

3.6. Model block

The model block defines the log probability function on the constrained parameter space. The
example in Figure 3 has a simple model containing four sampling statements. The hyperprior
on the prior mean lambda is uniform, and the hyperprior on the prior count kappa is a Pareto
distribution with lower-bound of support at 0.1 and shape 1.5, leading to a probability of
κ > 0.1 proportional to κ−5/2. Note that the hierarchical prior on theta is vectorized: each
element of theta is drawn independently from a beta distribution with prior success count
alpha and prior failure count beta. Both alpha and beta are transformed parameters, but
because they are only used on the right-hand side of a sampling statement do not require a
Jacobian adjustment of their own. The likelihood function is also vectorized, with the effect
that each success count y[i] is drawn from a binomial distribution with number of trials
n[i] and chance of success theta[i]. In vectorized sampling statements, single values may
be repeated as many times as necessary.

The model block is executed after the transformed parameters block every time the log prob-
ability function is evaluated.

3.7. Generated quantities block

The (optional) generated quantities allows values that depend on parameters and data, but
do not affect estimation, to be defined efficiently. The generated quantities block is called only
once per sample, not once per log probability function evaluation. It may be used to calculate
predictive inferences as well as to carry out forward simulation for predictive posterior checks;
see (Gelman et al. 2013) for examples.
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The BUGS surgical example explored the ranking of institutions in terms of surgical mortality
(Lunn et al. 2000, Examples, Volume 1). This is coded in the example in Figure 3 using the
generated quantities block. The generated quantity variable rnk[j] will hold the rank of
institution j from 1 to J in terms of mortality rate theta[j]. The ranks are extracted using
the rank function. The posterior summary will print average rank and deviation. (Lunn et al.
2000) illustrated posterior inference by plotting posterior rank histograms.

Posterior comparisons can be carried out directly or using rankings. For instance, the model in
Figure 3 sets highest[j] to 1 if hospital j has the highest estimated mortality rate. Applying
a hierarchical model then considering posterior inference appropriately adjusts for mulitple
comparisons; see (Gelman, Hill, and Yajima 2012; Efron 2010) for discussion.

As a second illustration, the generated quantities block n Figure 3 calculates the (posterior)
probability that a given institution is above-average in terms of mortality rate. This is done
for each institution j with the usual plug-in estimate of theta[j] > mean(theta), which
returns a binary (0 or 1) value. The posterior mean of above_avg[j] calculates the posterior
probability Pr[θj > θ̄|y, n] according to the model.

3.8. Initialization

Stan’s samplers and optimizers all start from either random or user-supplied values for each
parameter. User supplied initial values are validated and transformed to the underlying
unconstrained space; if a parameter value does not satisfy its declared constraints, the program
exits and an informative error message is printed. If random initialization is specified, the
built-in pseudorandom number generator is called once per unconstrained variable dimension.
The default initialization is to randomly generate values uniformly on [−2, 2] by default or
another interval by specification. This supplies fairly diffuse starting points when transformed
back to the constrained scale, and thus help with convergence diagnostics as discussed in
(Gelman et al. 2013). Models with more data or more elaborate structure require narrower
intervals for initialization to ensure the sampler is able to quickly converge to a stationary
distribution in the high mass region of the posterior.

3.9. Variable definition and block execution summary

A table summarizing the point at which variables are read, written, or defined is provided
in Figure 4. This table is defined assuming HMC or NUTS samplers, which require a log
probability and gradient calculation for one or more leapfrog steps per iteration; see (Hoffman
and Gelman 2011). Gelman and Hill (2007, p. 366) provide a taxonomy of the kinds of
variables used in Bayesian models. Figure 5 contains Gelman and Hill’s taxonomy aligned
with the corresponding locations of declarations and definitions in Stan. Unmodeled data
variables includes size constants and regression predictors. Modeled data variables include
known outcomes or measurements. A data variable or constant literal is modeled in a Stan
program if it (or a variable that depends on it) occurs on the left-hand side of a sampling
statement. Unmodeled parameters are provided as data, and are either known or fixed to
some value for convenience, a typical use being the parameters of a weakly informative prior
for a parameter.

A modeled parameter is given a distribution by the model (usually dependent on data and
correlated with other parameters). This can be done either by placing it (or a variable that
depends on it) on the left-hand side of a sampling statement or by declaring the variable with
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Block Statements? Action Evaluated

user initialization n/a transform chain

random initialization n/a randomize chain

data no read chain
transformed data yes evaluate chain

parameters no inv. transform, Jacobian leapfrog
inv. transform, write sample

transformed parameters yes evaluate leapfrog
write sample

model yes evaluate leapfrog

generated quantities yes evaluate sample
write sample

Figure 4: Each Stan program block admits certain actions that are evaluated at specific times
during sampling. For example, the parameter initialization in the data block requires a read
operation once per chain.

Variable Categorization Declaration Block

unmodeled data data, transformed data

modeled data data, transformed data

missing data parameters, transformed parameters

modeled parameters parameters, transformed parameters

unmodeled parameters data, transformed data

generated quantities transformed data, transformed parameters,
generated quantities

loop indices any loop statement

local variables any statement block

Figure 5: Variables of each categorization must be declared in specific blocks. Data may also
be expressed using numeric literals.
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a constraint (see Section 3.10).

Any variable that occurs in a (transformed) data block can also be provided instead as a
constant. So a user may decide to write y ~ normal(0,1) or to declare mu and sigma as data,
and write y ~ normal(mu,sigma). The latter choice allows the parameters to be changed
without recompiling the model, but requires them to be specified as part of the input data.

Missing data is a new variable type included here. In order to perform inference on missing
data, it must be declared as a parameter and modeled; see (Gelman et al. 2013) for a discussion
of statistical models of missing data. Unlike BUGS, data may not contain a mixture of missing
(i.e., NA) values and numeric values. Stan uses the built-in C++ floating-point (and integer)
arithmetic, for which there is no equivalent of NA. See (Stan Development Team 2014) for
strategies for coding missing data problems in Stan.

Generated quantities include simple transforms of data required for printing. For example,
the variable of interest might be a standard deviation, resulting from transforming a precision
parameter τ to a scale parameter σ = τ−1/2. A non-linearly transformed variable will have
different effective sample sizes and R̂ statistics than the variable it is derived from, so it is
convenient to define variables of interest in the generated quantities block to calculate these
statistics automatically. As seen in the example in Figure 3, generated quantities may also
be used for event probability estimates.

The generated quantities block may also be used for forward simulations, generating values to
make predictions or to perform posterior predictive checks; see (Gelman et al. 2013) for more
information. The generated quantities block is the only location in Stan in which random-
number generators may be applied explicitly (they are implicit in parameters).

Calculations in the generated quantities block do not impact the estimates of the parameters.
In this way, generated quantities can be used for predictions with a behavior not unlike that
of cut in BUGS (Lunn et al. 2012). Nevertheless, we recommend full Bayesian inference
in general, and only use the generated quantities block for efficiency and clarity of code.
For example, in many models, generating predictions for unseen data or replicating data for
posterior predictive checks does not affect the estimation of the parameters of interest.

The list in Figure 5 is completed with two types of local variables, loop indices and traditional
local variables. Unlike BUGS, Stan allows local variables to be declared and assigned. For
example, it is possible to compute the sum of the squares of entries in an array or vector y as
follows.12

{

real sum_of_squares;

sum <- 0;

for (n in 1:N)

sum <- sum + y[n] * y[n];

}

Local variables may not be declared with constraints, because there is no location at which
it makes sense to test that they satisfy the constraints.

3.10. Implicit uniform priors

12The built-in squared norm function is the right way to implement sums of squares in Stan.



22 Stan: A Probabilistic Programming Language

The default distribution for a variable is uniform over its support. For instance, a variable
declared with a lower bound of 0 and an upper bound of 1 implicitly receives a Uniform(0, 1)
distribution. These implicit uniform priors are improper if the variable has unbounded sup-
port. For instance, the uniform distributions over real values with upper and lower bounds,
simplexes and correlation matrices is proper, but the uniform distribution over unconstrained
or one-side constrained reals, ordered vectors or covariance matrices are not proper.

Stan does not require proper priors, but if the posterior is improper, Stan will halt with an
error message.13

3.11. The non-centered parameterization for hierarchical models

Consider the following hierarchical logistic regression model fragment.

data {

int<lower=1,upper=K> group[N]; // group of data item n

}

parameters {

...

vector mu; // mean coeff

real<lower=0> sigma; // coeff scale

vector[K] beta; // coeff for group k

}

model {

beta ~ normal(mu,sigma);

for (n in 1:N)

y[n] ~ bernoulli_logit(beta[group[n]] * x[n]);

...

}

With this parameterization, the beta[k] are centered around mu. As a result, a change in
sigma is amplified by the lower-level parameters and introduces a large change in density
across the posterior. Unfortunately the expected density variation of an HMC transition is
limited14 and many transitions are required to explore the full posterior. The resulting sampler
devolves into a random walk with high autocorrelations. Betancourt and Girolami (2013)
provide a detailed analysis of the benefits of centered vs. non-centered parameterizations of
hierarchical models in Euclidean and Riemannian HMC, with the conclusion that non-centered
are best when data are sparse and centered when the data strongly identifies coefficients.

The following reparameterization employs a non-centered parameterization for comparison.

parameters {

vector[K] beta_raw;

}

transformed parameters {

13Improper posteriors are diagnosed automatically when parameters overflow to infinity during simulation.
14The limited density variation is ultimately a consequence of a constant metric. An additional benefit of

RHMC are transitions that can cover much larger variations in density, making it uniquely suited to these
models; see (Neal 2011).
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vector[K] beta;

beta <- mu + sigma * beta_raw;

}

model {

beta ~ normal(0,1);

}

This reparameterization removes the particular correlations amongst the hierarchical variables
that would otherwise limit the effectiveness of the samplers. We recommend starting with the
more natural centered parameterization and moving to the non-centered parameterization if
sampling of the coefficients does not mix well.15

4. Data types

All expressions in Stan are statically typed, including variables. This means their type is
declared at compile time as part of the model, and does not change throughout the execution
of the program. This is the same behavior as is found in compiled programming languages
such as C(++), Fortran, and Java, but is unlike the behavior of interpreted languages such as
BUGS, R, and Python. Statically typing the variables (as well as declaring them in appropriate
blocks based on usage) makes Stan programs easier to read and easier to debug by making
explicit the modeling decisions and expression types.

4.1. Primitive types

The primitive types of Stan are real and int, which are used to represent continuous and
integer values. These values are represented directly in C++ as types double and int. Integer
expressions can be used anywhere a real value is required, but not vice-versa.

4.2. Vector and matrix types

Stan supports vectors, row vectors, and matrices with the usual access operations. Indexing
for vector, matrix, and array types starts from one.

Vectors are declared with their sizes and matrices with their number of rows and columns.

All vector and matrix types contain real values and may not be declared to contain integers.
Collections of integers are represented using arrays.

4.3. Array types

An array may have entries of any other type. For example, arrays of integers and reals are
allowed, as are arrays of vectors or arrays of matrices.

Higher-dimensional arrays are intrinsically arrays of arrays. An entry in a two-dimensional
array y may be accessed as y[1,2]. The expression y[1] by itself denotes the one-dimensional
array whose values correspond to the first row of y. Thus y[1][2] has the same value as
y[1,2].16

15As the saying goes in computer science, it is easier to optimize a correct program than debug an optimized
program.

16Arrays are stored in row-major order and matrices in column-major order.
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Unlike integers, which may be used where real values are required, arrays of integers may not
be used where real arrays are required.17

4.4. Constrained variable types

Variables may be declared with constraints. The constraints have different effects depending
on the block in which the variable is declared.

Integer and real types may be provided with lower bounds, upper bounds, or both. This
includes the types used in arrays, and the real types used in vectors and matrices.

Vector types may be constrained to be unit simplexes (all entries non-negative and summing
to 1), unit length vectors (sum of squares is 1), or ordered (entries are in ascending order),
positive ordered (entries in ascending order, all non-negative), using the types simplex[K],
unit_vector[K], ordered[K], or positive_ordered[K], where K is the size of the vector.

Matrices may be constrained to be covariance matrices (symmetric, positive definite) or corre-
lation matrices (symmetric, positive definite, unit diagonal), using the types cov_matrix[K]
and corr_matrix[K].

5. Expressions and type inference

The syntax of Stan is defined in terms of expressions and statements. Expressions denote
values of a particular type. Statements represent operations such as assignment and sampling
as well as control structures such as for loops and conditionals.

5.1. Expressions

Stan provides the usual kinds of expressions found in programming languages. This includes
variables, literals denoting integers, real values or strings, binary and unary operators over
expressions, and function application.

Type inference

The type of each variable is declared statically and cannot change.

The type of a numeric literal is determined by whether or not it contains a period or scientific
notation; for example, 20 has type int whereas 20.0 and 2e+1 have type real.

The type of applying an operator or a function to one or more expressions is determined by
the available signatures for the function. For example, the multiplication operator (*) has a
signature that maps two int arguments to an int and two real arguments to a real result.
Another signature for the same operator maps a row_vector and a vector to a real result.

Type promotion

If necessary, an integer type will be promoted to a real value. For example, multiplying an
int by a real produces a real result by promoting the int argument to a real.

17In the language of type theory, Stan arrays are not covariant. This follows the behavior of both arrays and
standard library containers in C++.
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6. Statements

6.1. Assignment and sampling

Stan supports the same two basic statements as BUGS, assignment and sampling, examples of
which were introduced earlier. In BUGS, these two kinds of statment define a directed acyclic
graphical model; in Stan, they define a log probability function.

Log probability accumulator

There is an implicitly defined variable lp__ (available in the transformed parameters and
model blocks) denoting the log probability that will be returned by the log probability func-
tion.

Sampling statements

A sampling statement is nothing more than shorthand for incrementing the log probability
accumulator lp__. For example, if beta is a parameter of type real, the sampling statement

beta ~ normal(0,1);

has the exact same effect (up to dropping constant terms) as the special log probability
increment statement

increment_log_prob(normal_log(beta,0,1));

Define variables before sampling statements

The translation of sampling statements to log probability function evaluations explains why
variables must be defined before they are used. In particular, a sampling statement does not
sample the left-hand side variable from the right-hand side distribution.

Parameters are all defined externally by the sampler; all other variables must be explicitly
defined with an assignment statement before being used.

Direct definition of probability functions

Because computation is only up to a proportion, this sampling statement in turn has the
same effect as the direct implementation in terms of basic arithmetic,

increment_log_prob(-0.5 * beta * beta);

If beta is of type vector, replace beta * beta with beta’ * beta. Distributions whose
probability functions are not built directly into Stan can be implemented directly in this
fashion.

6.2. Sequences of statements and execution order

Stan allows sequences of statements wherever statements may occur. Unlike BUGS, in which
statements define a directed acyclic graph, in Stan, statements are executed imperatively in
the order in which they occur in a program.
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Blocks and variable scope

Sequences of statements surrounded by curly braces ({ and }) form blocks. Blocks may start
with local variable declarations. The scope of a local variable (i.e., where it is available to be
used) is that of the block in which it is declared.

Other variables, such as those declared as data or parameters, may only be assigned to in the
block in which they are declared. They may be used in the block in which they are declared
and may also be used in any block after the block in which they are declared.

6.3. Whitespace, semicolons, and comments

Following the convention of C++, statements are separated with semicolons in Stan so that
the content of whitespace (outside of comments) is irrelevant. This is in contrast to BUGS
and R, in which carriage returns are special and may indicate the end of a statement.

Stan supports the line comment style of C++, using two forward slashes (//) to comment out
the rest of a line; this is the one location where the content of whitespace matters. Stan also
supports the line comment style of R and BUGS, treating a pound sign (#) as commenting
out everything until the end of the line. Stan also supports C++-style block comments, with
everything between the start-comment (/*) and end-comment (*/) markers being ignored.

The preferred style follows that of C++, with line comment used for everything but multiline
comments.

Stan follows the C++ convention of separating words in variable names using underbars (_),
rather than dots (.), as used in R and BUGS, or camel case as used in Java.

6.4. Control structures

Stan supports the same kind of explicitly bounded for loops as found in BUGS and R. Like R,
but unlike BUGS, Stan supports while loops and conditional (if-then-else) statements.18 Stan
provides the usual comparison operators and boolean operators to help define conditionals
and condition-controlled while loops.

6.5. Print statements and debugging

Stan provides print statements which take arbitrarily many arguments consisting of expres-
sions or string literals consisting of sequences of characters surrounded by double quotes (").
These statements may be used for debugging purposes to report on intermediate states of
variables or to indicate how far execution has proceeded before an error.

7. Function and distribution library

In order to support the algorithmic differentiation required to calculate gradients, Hessians,
and higher-order derivatives in Stan, we require C++ functions that are templated separately
on all of their arguments. In order for these functions to be efficient in computing both values
and derivatives, they need to be vectorized so that shared computations can be reused.

18BUGS omits these control structures because they would introduce ambiguities into the directed, acyclic
graph defined by model.
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7.1. Basic operators

Stan supports all of the basic C++ arithmetic operators, boolean operators, comparison op-
erators In addition, it extends the arithmetic operators to matrices and includes pointwise
matrix operators.19 The full set of operators is listed in Figure 6.

7.2. Special functions

Stan provides an especially rich set of special functions. This includes all of the C++ math
library functions, as well as numerous more specialized functions such as Bessel functions,
gamma and digamma functions, and generalized linear model link functions and their in-
verses. There are also many compound functions, such as log1m(x), which is more stable
arithmetically for values of x near 0 than log(1 - x). Stan’s special functions are listed in
Figure 9 and Figure 10.

In addition to special functions, Stan includes distributions with alternative parameterizations,
such as bernoulli_logit, which takes a parameter on the log odds (i.e., logit) scale. This
allows a more concise notation for generalized linear models as well as more efficient and
arithmetically stable execution.

7.3. Matrix and linear algebra functions

Following the usual convention in mathematics, matrix and array indexing uses the usual
square brackets ([ ]) operator, and begins indexing from 1. For example, if Sigma is a
matrix, then Sigma[m,n] is the entry at row m and column n. Stan also allows slices of data
structures to be returned, so that Sigma[m] is row m of the matrix Sigma.

Various reductions are provided for arrays and matrices, such as sums, means, standard
deviations, and norms. Replications are also available to copy a value into every cell of a
matrix. Slices of matrices and vectors may be accessed by row, column, or general sub-block
operations.

Matrix operators use the types of their operands to determine the type of the result. For
instance, multiplying a vector by a (column) row vector returns a matrix, whereas multiplying
a row vector by a (column) vector returns a real. A postfix apostrophe (’) is used for matrix
and vector transposition. For example, if y and mu are vectors and Sigma is a square matrix,
all of the same dimensionality, then y - mu is a vector, (y - mu)’ is a row vector, (y - mu)’

* Sigma is a row vector, and (y - mu)’ * Sigma * (y - mu) will be a real value. Matrix
division is provided, which is much more arithmetically stable than inversion, e.g., (y - mu)’

/ Sigma computes the same function as (y - mu)’ * inverse(Sigma). Stan also supports
elementwise multiplication (.*) and division (./).

Linear algebra functions are provided for trace, left and right division, Cholesky factoriza-
tion, determinants and log determinants, inverses, eigenvalues and eigenvectors, and singular
value decomposition. All of these operations may be applied to matrices of parameters or
constants. Various functions are specialized for speed, such as quadratic products, diagonal
specializations, multiply by self transposed, e.g., the previous example could be written as
quad_form(Sigma, y - mu).

19This is in contrast to R and BUGS, who treat the basic multiplication and division operators pointwise
and use special symbols for matrix operations.
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The full set of matrix and linear-algebra functions is listed in Figure 11; operators, which also
apply to matrices and vectors, are listed in Figure 6.

7.4. Probability functions

Stan supports a growing collection of built-in univariate and multivariate probability density
and mass functions. These probability functions share various features of their declarations
and behavior.

All probability functions are defined on the log scale to avoid underflow. They are all named
with the suffix _log, e.g., normal_log(), is the log-scale normal distribution density function.

All probability functions check that their arguments are within the appropriate constrained
support and may be configured to throw exceptions or return −∞ or a special not-a-number
value (NaN) for out-of-domain arguments (the behavior of positive and negative infinity and
not-a-number values are built into floating-point arithmetic). For example, normal_log(y,
mu, sigma) requires the scale parameter sigma to be non-negative.

The list of probability functions is provided in Figure 12, Figure 13, and Figure 14.

Up to a proportion calculations

All probability functions support calculating results up to a constant proportion, which be-
comes an additive constant on the log scale. Constancy here refers to being a numeric literal
such as 1 or 0.5, a constant function such as pi(), data and transformed data variables, or
a function that only depends on literals, constant functions or data variables.

Non-constants include parameters, transformed parameters, local variables declared in the
transformed parameters or model statements, as well as any expression involving a non-
constant.

Constant terms are dropped from probability function calculations at the time the model is
compiled, so there is no run-time overhead to decide which expressions denote constants.20 For
example, executing y ~ normal(0,sigma) only evaluates log(sigma) if sigma is a parameter,
transformed parameter, or a local variable in the transformed parameters or model block; that
is, log(sigma) is not evaluated if sigma is constant as defined above.

Constant terms are not dropped in explicit function evaluations, such as normal_log(y,0,sigma).

Vectorization

All of the univariate21 probability functions in Stan are vectorized so that they accept arrays
or vectors of arguments. For example, although the basic signature of the probability function
normal_log(y,mu,sigma) involves real y, mu and sigma, it supports calls in which any any or
all of y, mu and sigma contain more than one element. A typical use case would be for linear
regression, such as y ~ normal(X * beta,sigma), where y is a vector of observed data, X is
a predictor matrix, beta is a coefficient vector, and sigma is a real value for the noise scale.

20Both vectorization and dropping constant terms are implemented in C++ through template metaprograms
that infer traits of template arguments to the probability functions. Whether to drop constants is configurable
through a boolean template parameter on the log probability and derivative functions generated in C++ for a
model.

21We are in the process of vectorizing the multivariate probability functions, but they are not all available
in Stan 2.0. We are also in the process of vectorizing all of the special functions.
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The advantage of using vectorization is twofold. First, the models are more concise and
closer to mathematical notation. Second, the vectorized versions are much faster. They
reduce the number of times expensive operations need to be evaluated and also reduce the
number of virtual function calls required in the compiled C++ executable for calculating
gradients and higher-order derivatives. In the example above, y ~ normal(X * beta,sigma),
the logarithm of sigma need only be computed once; if y is an N -vector, it also reduces the
number of virtual function calls from N to 1.

8. Built-in inference engines

Stan includes several Markov chain Monte Carlo (MCMC) samplers and several optimizers.
Others may be straightforwardly implemented within Stan’s C++ framework for sampling
and optimization using the log probability and derivative information supplied by a model.

8.1. Markov chain Monte Carlo samplers

Hamiltonian Monte Carlo

The MCMC samplers provided include Euclidean manifold Hamiltonian Monte Carlo (EHMC,
or just HMC) (Duane, Kennedy, Pendleton, and Roweth 1987; Neal 1994, 2011) and the No-
U-Turn sampler (NUTS) (Hoffman and Gelman 2011). Both the basic and NUTS versions
of HMC allow estimation or specification of unit, diagonal, or full mass matrices. NUTS,
the default sampler for Stan, automatically adapts the number of leapfrog steps, eliminating
the need for user-specified tuning parameters. Both algorithms take advantage of gradient
information in the log probability function to generate coherent motion through the posterior
that dramatically reduces the autocorrelation of the resulting transitions.

Stan will soon have an implementation of Riemannian manifold Hamiltonian Monte Carlo
(RHMC) (Girolami and Calderhead 2011), using the SoftAbs metric to robustly incorporate
posterior curvature into the Hamiltonian simulation Betancourt (2012). Stan’s MCMC frame-
work also makes it straightforward to incorporate other metrics. This implementation will
also generalize NUTS to Riemannian manifolds (Betancourt 2013). Both support adapting
step sizes during warmup. RHMC with SoftAbs uses first, second, and third order derivatives
to adapt to the local curvature of the posterior.

Metropolis-Hastings

Random-walk Metropolis-Hastings samplers with multivariate normal proposals have been
prototyped, but not yet integrated into the released versions of Stan. The primary purpose
of implementing Metropolis-Hastings is to provide baselines against which to measure more
efficient approaches to sampling. The covariance matrix used can be adapted during warmup,
assuming either equal diagonal covariance, diagonal covariance, or a full covariance matrix.
Metropolis-Hastings does not require any derivatives of the log probability function, but the
lack of gradient information induces random walk behavior, leading to slow mixing.

Ensemble samplers

Two flavors of ensemble samplers are also in the works: an affine invariant ensemble sampler
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(Goodman and Weare 2010) and a differential evolution sampler (Ter Braak 2006). Ensemble
samplers do not require derivative information, but typically require at least as many chains
to be run as the number of dimensions in order to have full rank search of the posterior.
They also require slightly different management of output due to a single sampler instance
producing multiple correlated chains of draws.

8.2. Optimizers

In addition to performing full Bayesian inference via posterior sampling, Stan also can per-
form optimization (i.e., computation of the posterior mode). We are currently working on
implementing other optimization-based inference approaches including variational Bayes, ex-
pectation propagation, and and marginal inference using approximate integration. All these
algorithms require optimization steps.

BFGS

The default optimizer in Stan is the Broyden-Fletcher-Goldfarb-Shannon-Boyd (BFGS) op-
timizer. BFGS is a quasi-Newton optimizer that evaluates gradients directly, then uses the
gradients to update an approximation to the Hessian. Plans are in the works to also include
the more involved, but more scalable limited-memory BFGS (L-BFGS) scheme. Nocedal and
Wright (2006) cover both BFGS and L-BFGS samplers.

Conjugate gradient

Stan provides a standard form of conjugate gradient optimization; see (Nocedal and Wright
2006). As its name implies, conjugate gradient optimization requires gradient evaluations.

Accelerated gradient

Additionally, Stan implements a crude version of Nesterov’s accelerated gradient optimizer
Nesterov (1983), which combines gradient updates with a momentum-like update to hasten
convergence.

9. Random number generation

Random number generation for Stan is done on a per-chain basis; ensemble samplers form a
single joint chain over the ensemble. By specifying the chain being used, the random number
generator can be skipped ahead sufficiently to avoid replication of subsequences of random
numbers across chains.

The generated model code and underlying C++ algorithms provide template parameters for
a class implementing the Boost random number generator concept.

By default, Stan uses linear congruential generators (L’Ecuyer 1988). This generator supports
efficient skip-ahead.

9.1. Replicability

The Stan interfaces all allow random-number generator seeds to be specified explicitly. Exe-
cution uses a single base random number generator instance. Therefore, by specifying a seed,
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Stan’s behavior is deterministic. This is very useful for debugging purposes. Seeds can be
generated randomly based on properties of the system time, but when they are, the seed used
is printed as part of the output to allow it to be fully replicated.

10. Library dependencies

Stan’s modeling language is only dependent on two external libraries.

10.1. Boost

Stan depends on several of the Boost C++ libraries (Schäling 2011). Stan makes extensive
use of Boost’s template metaprogramming facilities including the Enable if package, the Type
Traits library, and the Lexical Cast library. The Stan language is parsed using Boost’s Spirit
parser, which itself depends on the binding libraries Phoenix, Bind, and Lambda, the variant
type library Variant, and the container library Fusion. Exceptions are largely handled and
configured through the error checking facilities in the Math and Exception packages. Out-
put formatting and ad-hoc input parsing for various formats is facilitated with the Format
library. Stan relies heavily on the special functions defined in the Math subpackages Special
Functions and Statistical Distributions. Random number generation is carried out using the
Random package. The posterior analysis framework and some built-in functions depend on
the Accumulators package.

10.2. Eigen

Stan’s handling of matrices and linear algebra is implemented through the Eigen C++ tem-
plate library (Guennebaud and Jacob 2012). Eigen uses template metaprogramming to
achieve state-of-the-art performance for matrix and linear algebra operations with a great
deal of flexiblity with respect to input types. Unfortunately, many of the expression templates
that Eigen uses for efficient static anaysis and lazy evaluation are short-circuited because of
Stan’s need to have mixed type operations (i.e., multiplying a constant predictor matrix of
double values by a parameter vector of algorithmic differentiation values). To make up for
this in some important cases, Stan has provided compound functions such as the quadratic
form, which allow speedups of both the matrix operations and their derivatives compared to
a direct implementation using Stan’s built-in operators.

11. Developer process

11.1. Version control and source repository

Stan’s source code is hosted on GitHub and managed using the Git version control system
(Chacon 2009). To manage the workflow with so many developers working at any given
time, the project follows the GitFlow process (Driessen 2010). All developer submissions
are managed through pull requests and we have gratefully received patches from numerous
sources outside the core development team.
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11.2. Continuous integration

Stan uses continuous integration, meaning that the entire program and set of tests are run
automatically as code is pushed to the Git repository. Each pull request is tested for compat-
ibility with the development branch, and the development branch itself is tested for stability.
Stan uses Jenkins (Smart 2011), an open-source continuous integration server.

11.3. Testing framework

Stan includes extensive unit tests for low-level C++ code. Unit tests are implemented using the
googletest framework (Google 2011). The probability functions and command-line invocations
are complex enough that programs are used to automatically generate test code for googletest.

These unit tests evaluate every function for both appropriate values and appropriate deriva-
tives. This requires an extensive meta-testing framework for the probability distributions
due to their high degree of configurability as to argument types. The testing portion of the
makefile also runs tests of all of the built-in models, including almost all of the BUGS sample
models. Models are tested for both convergence and posterior mean estimation to within
MCMC standard error.

11.4. Builds

The build process for Stan is highly automated through a cross-platform series of make files.
The top-level makefile builds the Stan-to-C++ translator command bin/stanc and posterior
analysis command bin/print. It also builds the library archive bin/libstan.a. Great care
was taken to avoid complicated platform-dependent configuration requirements that place a
high burden on user system knowledge for installation. All that is needed is a relatively recent
C++ compiler and version of make.

As exemplified in the introduction, the makefile is automated enough to build an executable
form of a Stan model in a single command. All libraries and other executables will be built
as a side effect.

The top-level makefile also supplies targets to build all of the documentation C++ API
documentation is generated using the doxygen package (van Heesch 2011). The Stan manual
(Stan Development Team 2014) is typeset using the LATEX package (Mittelbach, Goossens,
Braams, Carlisle, and Rowley 2004).

The makefile also has targets for all of the unit and functional testing, for building the source-
level distribution, and for cleaning any temporary files that it creates.
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Operation Precedence Associativity Placement Description

|| 9 left binary infix logical or

&& 8 left binary infix logical and

== 7 left binary infix equality
!= 7 left binary infix inequality

< 6 left binary infix less than
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> 6 left binary infix greater than
>= 6 left binary infix greater than or equal

+ 5 left binary infix addition
- 5 left binary infix subtraction

* 4 left binary infix multiplication
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\ 3 left binary infix left division

.* 2 left binary infix elementwise multiplication

./ 2 left binary infix elementwise division

! 1 n/a unary prefix logical negation
- 1 n/a unary prefix negation
+ 1 n/a unary prefix promotion (no-op in Stan)

’ 0 n/a unary postfix transposition

() 0 n/a prefix, wrap function application
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Figure 6: Each of Stan’s unary and binary operators follow strict precedences, associativities,
placement within an expression. The operators are listed in order of precedence, from least
tightly binded to most tightly binding.
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Function Description

e base of natural logarithm
epsilon smallest positive number
negative_epsilon largest negative value
negative_infinity negative infinity
not_a_number not-a-number
pi π
positive_infinity positive infinity
sqrt2 square root of two

Figure 7: Stan implements a variety of useful constants.

Function Description

acos arc cosine
acosh arc hyperbolic cosine
asin arc sine
asinh arc hyperbolic sine
atan arc tangent
atan2 arc ratio tangent
atanh arc hyperbolic tangent
cos cosine
cosh hyperbolic cosine
hypot hypoteneuse
sin sine
sinh hyperbolic sine
tan tangent
tanh hyperbolic tangent

Figure 8: Stan implements both circular and hyperbolic trigonometric functions, as well as
their inverses.
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Function Description

abs double absolute value
abs integer absolute value
binary_log_loss log loss
bessel_first_kind Bessel function of the first kind
bessel_second_kind Bessel function of the second kind
binomial_coefficient_log log binomial coefficient
cbrt cube root
ceil ceiling
cumulative_sum cumulative sum
erf error function
erfc complementary error function
exp base-e exponential
exp2 base-2 exponential
expm1 exponential of quantity minus one
fabs real absolute value
fdim positive difference
floor floor
fma fused multiply-add
fmax floating-point maximum
fmin floating-point minimum
fmod floating-point modulus
if_else conditional
int_step Heaviside step function
inv inverse (one over argument)
inv_cloglog inverse of complementary log-log
inv_logit logistic sigmoid
inv_sqrt inverse square root
inv_square inverse square
lbeta log beta function
lgamma log Γ function
lmgamma log multi-Γ function
log natural (base-e) logarithm
log10 base-10 logarithm
log1m natural logarithm of one minus argument
log1m_exp natural logarithm of one minus natural exponential
log1m_inv_logit natural logarithm of logistic sigmoid
log1p natural logarithm of one plus argument
log1p_exp natural logarithm of one plus natural exponential
log2 base-2 logarithm

Figure 9: Stan implements many special and transcendental functions.
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Function Description

log_diff_exp natural logarithm of difference of exponentials
log_falling_factorial falling factorial (Pochhammer)
log_inv_logit natural logarithm of the logistic sigmoid
log_rising_factorial falling factorial (Pochhammer)
log_sum_exp logarithm of the sum of exponentials of arguments
logit log-odds
max integer maximum
max real maximum
mean sample average
min integer minimum
min real minimum
modified_bessel_first_kind modified Bessel function of the first kind
modified_bessel_second_kind modified Bessel function of the second kind
multiply_log multiply linear by log
owens_t Owens-t
phi Φ function (cumulative unit normal)
phi_approx efficient, approximate Φ
pow power (i.e., exponentiatiation)
prod product of sequence
rank rank of element in array or vector
rep_array fill array with value
round round to nearest integer
sd sample standard deviation
softmax softmax (multi-logit link)
sort_asc sort in ascending order
sort_desc sort in descending order
sqrt square root
square square
step Heaviside step function
sum sum of sequence
tgamma Γ function
trunc truncate real to integer
variance sample variance

Figure 10: Special functions (continued).
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Function Description

block sub-block of matrix
cholesky_decompose Cholesky decomposition
col column of matrix
cols number of columns in matrix
columns_dot_product dot product of matrix columns
columns_dot_self dot product of matrix columns with self
crossprod cross-product
determinant matrix determinant
diag_matrix vector to diagonal matrix
diag_post_multiply post-multiply matrix by diagonal matrix
diag_post_multiply pre-multiply matrix by diagonal matrix
diagonal diagonal of matrix as vector
dims dimensions of matrix
dot_product dot product
dot_self dot product with self
eigenvalues_sym eigenvalues of symmetric matrix
eigenvectors_sym eigenvectors of symmetric matrix
head head of vector
inverse matrix inverse
inverse_spd symmetric, positive-definite matrix inverse
log_determinant natural logarithm of determinant
mdivide_left_tri_low lower-triangular matrix left division
mdivide_right_tri_low lower-triangular matrix right division
multiply_lower_tri_self_transpose multiply lower-triangular by transpose
quad_form quadratic form vector-matrix multiplication
rep_matrix replicate scalar, row vector or vector to matrix
rep_row_vector replicate scalar to row vector
rep_vector replicate scalar to vector
row row of matrix
rows number of rows in matrix
rows_dot_product dot-product of rows of matrices
rows_dot_self dot-product of matrix with itself
segment sub-vector
singular_values singular values of matrix
size number of entries in array or vector
sub_col sub-column of matrix
sub_row sub-row of matrix
tail tail of vector
tcrossprod matrix post-multiply by own transpose
trace trace of matrix
trace_gen_quad_form trace of generalized quadratic form
trace_quad_form trace of quadratic form

Figure 11: A large suite of matrix functions admits efficient multivariate model implementa-
tion in Stan.
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Function Description

bernoulli_cdf Bernoulli cdf
bernoulli_log log Bernoulli pmf
bernoulli_logit_log logit-scale log Bernoulli pmf
bernoulli_rng Bernoulli RNG
beta_binomial_cdf beta-binomial cdf
beta_binomial_log log beta-binomial pmf
beta_binomial_rng beta-binomial rng
beta_cdf beta cdf
beta_log log beta pdf
beta_rng beta RNG
binomial_cdf binomial cdf n
binomial_log log binomial pmf
binomial_logit_log log logit-scaled binomial pmf
binomial_rng binomail RNG
categorical_log log categorical pmf
categorical_rng categorical RNG
cauchy_cdf Cauchy cdf
cauchy_log log Cauchy pdf
cauchy_rng Cauchy RNG
chi_square_log log chi-square pdf
chi_square_rng chi-square RNG
dirichlet_log log Dirichlet pdf
dirichlet_rng Dirichlet RNG
double_exponential_log log double-exponential (Laplace) pdf
double_exponential_rng double-exponential (Laplace) RNG
exp_mod_normal_cdf exponentially modified normal cdf
exp_mod_normal_log log exponentially modified normal pdf
exp_mod_normal_rng exponentially modified normal RNG
exponential_cdf exponentia cdf
exponential_log log of exponential pdf
exponential_rng exponential RNG
gamma_log log gamma pdf
gamma_rng gamma RNG
gumbel_cdf Gumbel cdf
gumbel_log log Gumbel pdf
gumbel_rng Gumbel RNG
hypergeometric_log log hypergeometric pmf
hypergeometric_rng hypergeometric RNG
inv_chi_square_cdf inverse chi-square cdf
inv_chi_square_log log inverse chi-square pdf
inv_chi_square_rng inverse chi-square RNG

Figure 12: Most common probability distributions have explicitly implemented in Stan.
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Function Description

inv_gamma_cdf inverse gamma cdf
inv_gamma_log log inverse gamma pdf
inv_gamma_rng inverse gamma RNG
inv_wishart_log log inverse Wishart pdf
inv_wishart_rng inverse Wishart RNG
lkj_corr_cholesky_log log LKJ correlation, Cholesky-variate pdf
lkj_corr_cholesky_rng LKJ correlation, Cholesky-variate RNG
lkj_corr_log log of LKJ correlation pdf
lkj_corr_rng LKJ correlation RNG
logistic_cdf logistic cdf
logistic_log log logistic pdf
logistic_rng logistic RNG
lognormal_cdf lognormal cdf
lognormal_log log of lognormal pdf
lognormal_rng lognormal RNG
multi_normal_cholesky_log log multi-normal Cholesky-parameterized pdf
multi_normal_log log multi-normal pdf
multi_normal_prec_log log multi-normal precision-parameterized pdf
multi_normal_rng multi-normal RNG
multi_student_t_log log multi student-t pdf
multi_student_t_rng multi student-t RNG
multinomial_log log multinomial pmf
multinomial_rng multinomial RNG
neg_binomial_cdf negative binomial cdf
neg_binomial_log log negative binomial pmf
neg_binomial_rng negative biomial RNG
normal_cdf normal cdf
normal_log log normal pdf (c.f. log lognormal pdf)
normal_rng normal RNG
ordered_logistic_log log ordinal logistic pmf
ordered_logistic_rng ordinal logistic RNG
pareto_cdf Pareto cdf
pareto_log log Pareto pdf
pareto_rng Pareto RNG
poisson_cdf Poisson cdf
poisson_log log Poisson pmf
poisson_log_log log Poisson log-parameter pdf
poisson_rng Poisson RNG

Figure 13: Probability functions (continued)



40 Stan: A Probabilistic Programming Language

Function Description

rayleigh_log log Rayleigh pdf
rayleigh_rng Rayleigh RNG
rayleigh_cdf Rayleigh cdf
scaled_inv_chi_square_cdf scaled inverse-chi-square cdf
scaled_inv_chi_square_log log scaled inverse-chi-square pdf
scaled_inv_chi_square_rng scaled inverse-chi-square RNG
skew_normal_cdf skew-normal cdf
skew_normal_log log of skew-normal pdf
skew_normal_rng skew-normal RNG
student_t_cdf Student-t cdf
student_t_log log of Student-t pdf
student_t_rng Student-t RNG
uniform_log log of uniform pdf
uniform_rng uniform RNG
weibull_cdf Weibull cdf
weibull_log log of Weibull pdf
weibull_rng Weibull RNG
wishart_log log of Wishart pdf
wishart_rng Wishart RNG

Figure 14: Probability functions (continued 2)
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