
Stan: A Probabilistic Programming Language

for Bayesian Inference and Optimization

Andrew Gelman

Columbia University

Daniel Lee

Columbia University

Jiqiang Guo

Columbia University

Stan is a free and open-source Cþþ program that performs Bayesian inference

or optimization for arbitrary user-specified models and can be called from the

command line, R, Python, Matlab, or Julia and has great promise for fitting

large and complex statistical models in many areas of application. We discuss

Stan from users’ and developers’ perspectives and illustrate with a simple but

nontrivial nonlinear regression example.

Keywords: Bayesian inference; hierarchical models; probabilistic programming; statisti-

cal computing

1. What Is Stan? Users’ Perspective

Stan, named after Stanislaw Ulam, a mathematician who was one of the devel-

opers of the Monte Carlo method in the 1940s (Metropolis & Ulam, 1949), is a Cþþ
program to perform Bayesian inference. The code is open source and is available at

http://mc-stan.org/ along with instructions and a 500-page user manual. Stan 1.0 was

released in 2012 and, as of this writing, is currently in Version 2.6.

To use Stan, a user writes a Stan program that directly computes the log-posterior

density. This code is then compiled and run along with the data. The result is a set of

posterior simulations of the parameters in the model (or a point estimate, if Stan is set

to optimize). Stan can be run from the command line, R, Python, Matlab, or Julia,

and its output can be saved, printed, or graphed in R using shinyStan.

Stan can be thought of as similar to Bugs (Lunn, Thomas, Best, & Spiegelhal-

ter, 2000) and Jags (Plummer, 2003) in that it allows a user to write a Bayesian

model in a convenient language whose code looks like statistics notation. Or Stan

can be thought of as an alternative to programming a sampler or optimizer

Journal of Educational and Behavioral Statistics

Vol. XX, No. X, pp. 1–14

DOI: 10.3102/1076998615606113

2015 AERA. http://jebs.aera.net

1

 doi:10.3102/1076998615606113
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS OnlineFirst, published on October 12, 2015 as

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

oneself. Stan uses the no-U-turn sampler (Hoffman & Gelman, 2014), an adap-

tive variant of Hamiltonian Monte Carlo (Neal, 2011), which itself is a general-

ization of the familiar Metropolis algorithm, performing multiple steps per

iteration to move more efficiently through the posterior distribution.

From the user’s perspective, the main limitation of Stan is that it does not

allow inference for discrete parameters. Stan allows discrete data and discrete-

data models such as logistic regressions, but it cannot perform inference for dis-

crete unknowns. Many statistical applications with discrete parameters are mix-

ture models and can be rewritten more efficiently in terms of continuous

parameters as discussed in the chapter on latent discrete parameters in the Stan

manual (Stan Development Team, 2015), but there are some examples where this

sort of re-expression does not exist.

In addition, there are models that are slow to run or do not converge in Stan, a

problem it shares with any statistical inference engine. It is well known that opti-

mization and inference can never be performed in complete generality. There

will always be optimization or inference problems that are beyond our current

capacities. It is the goal of Stan to push these capacities forward.

2. Example: Fitting a Simple Nonlinear Model

We demonstrate Stan by fitting the model, y ¼ a1e�b1x þ a2e�b2x, to simu-

lated data. This sort of curve arises in the analysis of physical systems (e.g., a

two-compartment model in pharmacology), and it is easy to write down and

understand but can be difficult to fit when data are sparse or when the two coef-

ficients b1 and b2 are close to each other.

Our first step is to formulate this as a stochastic rather than deterministic model.

The simplest approach would be to add an independent error term, but in this sort

of problem the data are typically restricted to be positive, so we shall use multipli-

cative errors with a nonnormal distribution, thus, yi ¼ ða1e�b1xi þ a2e�b2xiÞ � ei, for

i ¼ 1, . . . , n, with log ei*Nð0;s2Þ.
The model needs to be constrained to separately identify the two components.

Here, we shall restrict b1 to be less than b2. The corresponding Stan model, start-

ing with noninformative priors on the parameters a, b, s, looks like this:

data f
int N;
vector[N] x;
vector[N] y;
g
parameters f

vector[2] log_a;
ordered[2] log_b;
real<lower¼0> sigma;
g

Stan: A Probabilistic Programming Language

2

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

transformed parameters f
vector<lower¼0>[2] a;
vector<lower¼0>[2] b;
a <- exp(log_a);
b <- exp(log_b);
g
model f

vector[N] ypred;
ypred <- a[1]*exp(-b[1]*x) þ a[2]*exp(-b[2]*x);
y * lognormal(log(ypred), sigma);
g

We explain this program, block by block:

� The data block declares the data that must be input into the Stan program. In this

case, we will input the data via a call from R. This particular model requires an

integer and two (real valued) vectors. Stan also supports matrices, ordered vectors,

simplexes (a vector constrained to be nonnegative and sum to 1), covariance

matrices, correlation matrices, and Cholesky factors. In addition, you can define

arrays of arbitrary dimension of any of these objects; for example, matrix[N,K]
z[J1,J2,J3]; would define a J1 �J2 � J3 array of matrices, each of dimension

N � K. These sorts of arrays can be useful for multilevel modeling.

� The parameters block introduces all the unknown quantities that Stan will esti-

mate. In this case, we have decided for convenience to parameterize the model

coefficients a and b in terms of their logarithms. The parameter vector log_a is

unrestricted, whereas log_b is constrained to be ‘‘ordered’’ (i.e., increasing) so

that the two terms of the model can be identified. Finally, sigma, the scale of the

error term, needs to be estimated, and it is constrained to be nonnegative. Stan also

allows upper bounds; for example, real<lower¼0,upper¼1>c; would define

a parameter constrained to be between 0 and 1.

� Transformed parameters are functions of data and parameters. In this example, we

define a and b by exponentiating log_a and log_b. This allows the model to be

written in a more readable way.

� The model block is where the log-posterior density is computed. In this particular

example, we are using a flat prior (i.e., uniform on the four parameters, loga[1],

loga[2], logb[1], and logb[2]), and so we just supply the likelihood. The last line

of the model block is a vector calculation and has the effect of adding N terms

to the log likelihood, with each term being the log density of the lognormal distri-

bution. We define the predicted value ypred in its own separate line of code to

make the model more readable.

We can try out this program by simulating fake data in R and then fitting the

Stan model. Here is the R code:

Gelman et al.

3

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

Set up the true parameter values
a <- c(.8, 1)
b <- c(2, .1)
sigma <- .2

Simulate data
x <- (1:1000)/100
N <- length(x)
ypred <- a[1]*exp(-b[1]*x) þ a[2]*exp(-b[2]*x)
y <- ypred*exp(rnorm(N, 0, sigma))

Fit the model
library("rstan")
fit<-stan("exponentials.stan",data¼list(N¼N,x¼x,y¼y),

iter¼1000,chains¼4)
print(fit, pars¼c("a", "b", "sigma"))

We have just run Stan for 4 chains of 1,000 iterations each. The computations are

automatically performed in parallel on our laptop, which has four processors. In

the call to print, we have specified that we want to see inferences for the para-

meters a, b, and sigma. The default would be to show all the parameters, but

in this case, we have no particular interest in seeing log_a and log_b.

Here is the R output:

Inference for Stan model: exponentials.

4 chains, each with iter¼1000; warmup¼500; thin¼1;
post-warmup draws per chain¼500, total post-warmup draws¼2000.

Samples were drawn using NUTS(diag_e) at Wed Mar 25 16:07:15

2015. For each parameter, n_eff is a crude measure of effective

sample size, and Rhat is the potential scale reduction factor on

split chains (at convergence, Rhat ¼ 1).

We can quickly summarize the inference for any parameter by its posterior mean and

standard deviation (not the column labeled se_mean which gives the Monte Carlo

standard error of the mean), or else using the posterior quantiles. In any case, in this

well-behaved example, Stan has recovered the true parameters to a precision given

by their inferential uncertainty. The only change is that the labeling of the two terms

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

a[1] 1.00 0.00 0.03 0.95 0.99 1.00 1.02 1.05 494 1

a[2] 0.70 0.00 0.08 0.56 0.65 0.69 0.75 0.87 620 1

b[1] 0.10 0.00 0.00 0.09 0.10 0.10 0.10 0.11 532 1

b[2] 1.71 0.02 0.34 1.15 1.48 1.67 1.90 2.49 498 1

sigma 0.19 0.00 0.00 0.19 0.19 0.19 0.20 0.20 952 1

Stan: A Probabilistic Programming Language

4

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

has switched but that is to be expected given that the model cannot tell them apart

and we have arbitrarily constrained b1 to be less than b2.

3. Continuing the Example: Regularizing Using a Prior Distribution

The above example is simple, perhaps deceptively so. The sum-of-exponentials

model is notoriously ill conditioned, and it is common for there to be no stable

solution.

Indeed, here is what happens when we rerun Stan with the identical code as

above but change the true coefficients from (2, 0.1) to (0.2, 0.1) in the code used

to simulate the data:

Bad news!
Actually, this is far from the worst possible outcome, as it is obvious from

these results that the algorithm has not converged to a sensible solution: In this

case, the coefficients b are estimated at infinity, which corresponds to a zero time

scale. Running the chains for longer does not help, and running an optimizer to

get a maximum likelihood estimate also fails catastrophically.

In problems like this where there is no stable solution, the Bayesian answer is

to add prior information. In this case, we make the assumption that the para-

meters a and b are likely to be not far from a unit scale. We set this up as a reg-

ularization or soft constraint by adding the following two lines in the model
block of the Stan program:

log_a * normal(0, 1); // If model is well scaled, these

log_b * normal(0, 1); // priors are weakly informative.

When we run this new program (using the same R script as before, just point-

ing to the file with the updated Stan code), the results are much cleaner:

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

a[1] 1.33eþ00 0.54 0.77 0.00 1.28 1.77eþ00 1.79eþ00 1.82eþ00 2 44.23

a[2] 2.46eþ294 Inf Inf 0.00 0.00 0.00eþ00 1.77eþ00 2.66eþ188 2000 NaN

b[1] 1.00e-01 0.04 0.06 0.00 0.10 1.30e-01 1.30e-01 1.40e-01 2 33.64

b[2] 3.09eþ305 Inf Inf 0.13 0.50 1.15eþ109 4.77eþ212 5.28eþ298 2000 NaN

sigma 2.00e-01 0.00 0.00 0.19 0.19 2.00e-01 2.00e-01 2.00e-01 65 1.06

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
a[1] 1.56 0.09 0.32 0.65 1.52 1.72 1.75 1.79 13 1.25
a[2] 0.32 0.08 0.28 0.06 0.14 0.22 0.37 1.13 13 1.20
b[1] 0.13 0.00 0.01 0.10 0.12 0.13 0.13 0.14 22 1.14
b[2] 1.94 0.20 2.29 0.14 0.22 1.26 3.00 7.34 127 1.05
sigma 0.20 0.00 0.00 0.19 0.19 0.20 0.20 0.21 656 1.00

Gelman et al.

5

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

Recall that the true parameter values in this simulation are a¼ (0.8, 1) and b¼
(2, 0.1), but the coefficients b have been constrained to be increasing, so the two

terms have switched their labels.

A careful examination of the quantiles reveals that the posterior distri-

bution for b2 is highly skewed, implying that the data are consistent with

high values of this parameter, or equivalently, a nearly zero time scale for

this term of the model. The parameters in this model are only weakly iden-

tified, as we can see further from the scatterplots of posterior simulations in

Figure 1.

In other simulations of this model, we have encountered much more skewed

posteriors, even with the strong unit normal prior. It is generally good practice to

simulate fake data multiple times and check that one’s statistical procedure reli-

ably reconstructs the assumed parameter values.

The user can experiment with the prior distribution, just as he or she can

experiment with any features of the model. For example, if we change the unit

normal priors to unit t4 distributions—these have wider tails and will thus admit

more extreme parameter values if they are consistent with the data—the poster-

iors, unsurprisingly, become broader. In the simulation above, the 95% poster-

ior interval for b2 changes from [0.14, 7.3], as shown in the above output, to

[0.14, 122]. Such a wide uncertainty reflects the weakness of these data to

0.07 0.08 0.09 0.10 0.11 0.12 0.13

Posterior simulations for b1 and b2

b1

b 2
0

10
20

(Large gray circle indicates true parameter values.)

8 10 12 14 16

0
2

4
6

8

Posterior simulations for 1/b1 and 1/b2

1/b1

1/
b 2

(Large gray circle indicates true parameter values.)

FIGURE 1. For each graph, the dots show 2,000 posterior simulation draws of the

parameters b, obtained by Stan fitting the model, y ¼ ð a1e�b1x þ a2e�b2xÞ error to

simulated data. The large gray circle on each graph shows the true parameter

values that were used to create the simulated data. We display inferences for

the key parameters b1 and b2, which are only weakly identified in this parti-

cular data set. We graph the parameters first as is, and then their reciprocals,

which corresponds to the time scales of the two exponentially decaying terms in the

model.

Stan: A Probabilistic Programming Language

6

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

estimate the parameters in this nonlinear model and motivates the use of a

strong prior.

It is also easy to extend the model in Stan in other ways, for example, by con-

structing a hierarchical specification with data from multiple groups in which the

parameters can vary by group.

4. How Does Stan Work? Developers’ Perspective

Stan has several components:

� A flexible modeling language where the role of a Stan program is to compute a log

posterior density. Stan programs are translated to templated Cþþ for efficient

computation.

� An inference engine that performs Hamiltonian Monte Carlo using the no-U-turn

sampler (Hoffman & Gelman, 2014) to get approximate simulations from the pos-

terior distribution, which is defined by the Stan program and by the data supplied to

it from the calling program.

� In addition, an L-BFGS optimizer (Byrd, Lu, Nocedal, & Zhu, 1994) that iterates to

find a (local) maximum of the objective function (in Bayesian terms, a posterior

mode) and can also be used as a stand-alone optimizer.

� The sampler and the optimizer both require gradients. Stan computes gradients

using reverse-mode automatic differentiation (Griewank & Walther, 2008), a pro-

cedure in which Stan’s compiler takes the function defined by the so-called Stan

program and analytically computes its derivative using an efficient procedure

which can be much faster than numerical differentiation, especially when the num-

ber of parameters is large.

� Routines to monitor the convergence of parallel chains and compute inferences and

effective sample sizes (Gelman et al., 2013).

� Wrappers to call Stan from R, Python, Stata, Matlab, Julia, and the command line,

and to graph the results. Where possible these calling functions automatically run

Stan in parallel. For example, on a laptop with four processors, Stan can be set up to

run one chain on each.

Stan is open source, lives on GitHub, and is being developed by several groups

of people. At the center is the core team, which currently numbers 17 people. The

core team, or subsets of it, meets weekly via videoconference, directs Stan

research and development, and coordinates Stan projects. The developers group

currently includes 46 people who exchange ideas on listserv, which is open to the

public. Various features of Stan including a model for correlation matrices

(Lewandowski, Kurowicka, & Joe, 2009), higher default acceptance rate for

adaptation, and vectorization of all the univariate distributions came from the

developers list. Stan also has a users group where people can post and answer

questions. There are currently 1,100 people on this list and it averages 15 mes-

sages per day.

Gelman et al.

7

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

The users group is diverse, including researchers in astronomy, ecology, phy-

sics, medicine, political science, education, economics, epidemiology, popula-

tion dynamics, pharmacokinetics, and many others.

The core team is actively involved in responding to user questions, partly

because the ultimate goal of the project is to serve research, and partly because

user problems typically represent gaps in performance or, at the very least, gaps

in communication.

5. Comparison to Other Software

Stan was motivated by the desire to solve problems that could not be solved in

a reasonable time (user programming time plus run time) using other packages.

There are also problems where Stan does not work so well.

In comparing Stan to other software options, we consider several criteria:

1. Flexibility, that is, being able to fit the desired model;

2. Ease of use, and user programming time,

3. Run time; and

4. Scalability as data set and model grow larger.

We go through each of these criteria for the following software options.

Bugs and Jags

Bugs is an automatic Bayesian inference engine written in Component Pascal

and developed largely from 1989 to 2004, which uses Gibbs sampling and other

algorithms to draw posterior samples from arbitrary user-specified graphical

models (Lunn, Spiegelhalter, Thomas, & Best, 2009). Jags is a variant of Bugs

written in Cþþ and developed from 2007 to 2013 (Plummer, 2003).

Compared to Bugs and Jags, Stan is more flexible in that its modeling language

is more general—with the major exception that those other packages can handle

discrete parameters and Stan cannot, unless they can be averaged over as in certain

finite mixture models. In addition, Bugs and Jags are based on graphical models,

which is a more restricted class than the arbitrary objective functions that can be

specified by Stan but which has certain advantages. For example, if a subset of

modeled data is missing, a Bugs or Jags model can be rerun as written, whereas

the Stan model needs to be altered to consider these missing values as parameters.

Missing data and discrete parameters aside, programming is about as easy in

Bugs and Jags as in Stan. In some ways, Stan is simpler because its modeling lan-

guage is imperative (i.e., each line of code has a particular effect), whereas Bugs

and Jags use declarative languages. On the other hand, there is a learning curve

for an existing user of Bugs or Jags to switch to Stan. To ameliorate this problem,

the example models in the Jags manual have been translated and are available on

the Stan webpage.

Stan: A Probabilistic Programming Language

8

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

Stan is faster for complex models and scales better than Bugs or Jags for large

data sets. This is a consequence partly of efficient implementation and use of mem-

ory management (Gay, 2005) and partly of Stan’s advanced algorithm. For exam-

ple, Figure 2 shows a speed comparison for a hierarchical logistic regression as the

problem scales up. Models with matrix parameters (e.g., multilevel models with

multiple coefficients that vary by group) are particularly slow in Bugs and

Jags—Gibbs sampling does not work well with covariance matrices. Stan is not

lightning fast in such settings but, for problems of moderate size, it runs well

enough to be practical. For example, the hierarchical time-series model in Gelman

and Ghitza (Ghitza & Gelman, 2014) required several hours to run in Stan but

would not have been fittable at all in other general-purpose Bayesian software.

Bugs and Jags are competitive with Stan on certain problems with conjugate

models and low posterior correlation, so that Gibbs sampling is fast and efficient.

In any case, none of this is meant as a criticism of Bugs and Jags, which were

pathbreaking programs that inspired the development of Stan.

Se
co

nd
s

/ S
am

pl
e

Total Ratings

10 Items

100 Items

1000 Items

10–3

10–2

10–1

100

102 103 104 105 106

FIGURE 2. (Top) With thousands of items, and millions of total ratings, Stan is able to

generate samples from a hierarchical logistic regression model in seconds. With only a

few hundred iterations needed for inference, this scaling admits practical implementation

of such item-response theory models with large data sets. (Bottom) Stan is twice as fast

(and also yields roughly 4 times as many effective samples) as the previous state of the

art, Jags.

Gelman et al.

9

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

Existing General-Purpose Optimizers

Stan also contains an optimizer and so it can be compared to various optimizers

that exist in various scientific software packages. We have not yet performed any

speed comparisons, but we believe Stan should perform well because L-BFGS is

known to be efficient, and Stan’s automatic differentiation is fast and is optimized

for problems such as normal distributions and logistic models that are common in

statistics. We are currently finishing implementing higher order automatic differ-

entiation in Stan, at which point Stan’s optimizer will be able to immediately sup-

ply Hessians, which can be used to compute asymptotic variances.

Preprogrammed Approximations to Bayesian Inference

for Specific Model Classes

Bayesian inference or approximate Bayesian inference (e.g., hierarchical

models using marginal posterior modes) has been implemented for various

classes of models with applied importance, including:

1. Multilevel linear and logistic regressions such as lme4 in R (Bates, Maechler,

Bolker, & Walker, 2014), gllamm in Stata (Rabe-Hesketh, Skrondal, & Pickles,

2005), HLM (Raudenbush, Bryk, & Congdon, 2004), and Mplus (Muthén &

Muthén, 1998–2011);

2. Item-response and ideal-point models (mcmcpack in R; Martin, Quinn, & Park,

2011);

3. Differential equation models in pharmacology with parameters that vary by person

(Nonmem; Beal, Sheiner, Boeckmann, & Bauer, 1989–2009); and

4. Gaussian process regression (GPstuff in Matlab; Vanhatalo et al., 2013).

Stan competes with these programs in different ways. Multilevel regressions,

item-response, and ideal-point models can already be fit in Stan, although there

remain certain problems of moderate size where approximate methods can give

reasonable answers in less time.

Stan can fit hierarchical differential equation models, allowing users more

flexibility and a more full accounting for uncertainty, as compared to Nonmem,

which uses point estimation for hyperparameters. In such problems, we have

found Stan’s full Bayes approach to be more computationally stable, especially

in the presence of reasonably informative prior distributions. But there remain

many practical examples where Stan remains quite a bit slower than Nonmem,

and for these examples it makes sense to have access to both systems.

Gaussian processes are currently more challenging. When the number of ele-

ments of the process is large (1,000 or more, say), full Bayesian inference for

Gaussian processes using Stan can become not just slow but effectively impos-

sible for models such as logistic regressions where there is no analytic solution.

In contrast, GPstuff uses an implementation of expectation propagation

Stan: A Probabilistic Programming Language

10

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

(Vanhatalo et al., 2013), which is fast enough to work for problems that are too

large for Stan to tackle (and much too large for Bugs or Jags).

Programming Bayesian Inference Directly

A final option, indeed until recently the first option for Bayesian statisticians,

is to program one’s model and inference directly in C, R, or Python or using some

set of tools such as PyMC (Patil, Huard, & Fonnesbeck, 2010). Such programs

have two parts: the specification of the model and the algorithm used to perform

the sampler. Stan makes most such efforts obsolete because it is laborious to

handwrite code to compute a log probability density and its gradient, and in many

cases the Stan implementation will be faster.

One area where direct coding may still be necessary is when model predic-

tions come from a complex ‘‘black box,’’ which cannot easily be translated into

Stan. In such cases, it can be easier to build a sampler around the black box rather

than to take the code apart and put it inside Stan. There are also certain difficult

problems, such as inference for models with unknown normalizing constants,

where the form of the model itself must be approximated so that no general-

purpose algorithm can work.

6. Other Features and Future Developments

Stan has many capacities not discussed in the present article, including a large

library of distributions and mathematical functions, random number generation,

and the ability for users to write their own functions that can be called in R or by

other Stan programs.

The current highest priority of work in Stan is in three directions: more sophis-

ticated algorithms such as Riemannian HMC (Betancourt, 2013) for hard prob-

lems; approximate algorithms including variational inference (Kucukelbir,

Ranganath, Gelman, & Blei, 2015), expectation propagation (Gelman et al.,

2014), and marginal maximum likelihood for big models fit to big data; and

user-friendly implementations of workhorse models such as hierarchical regres-

sions and Gaussian processes. Under the hood, important steps in making these

algorithms run fast include higher order autodiff and more efficient implementa-

tions of matrix operations. In addition, we are working to make Stan faster, one

model at a time, working with colleagues in various applied fields including ecol-

ogy, pharmacology, astronomy, political science, and education research. For

that last project, we are developing efficient and user-friendly implementations

of linear regression, generalized linear models, hierarchical models, and item-

response models.

These implementations offer several advantages beyond what was previ-

ously available in R, Stata, and other statistics packages: the Stan implemen-

tations should be more stable and scale better for large data sets and large

models, include more general model classes (e.g., combining hierarchical

Gelman et al.

11

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

modeling with ordered multinomial regression, a family that is not, strictly

speaking, a generalized linear model but can be implemented easily enough

in Stan), and easily allow prior distributions, which can make a big differ-

ence for regularization when parameters are only weakly identified. We also

would like to extend Stan to allow discrete parameters. The larger goal is to

relax the constraints that researchers often face, having to choose among a

limited menu of models because of computational restrictions.

Acknowledgments

We thank the Institute for Education Sciences, the National Science Foundation, the Sloan

Foundation, and the Office of Naval Research for partial support of this work.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research,

authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publi-

cation of this article.

References

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: Linear mixed-effects

models using Eigen and S4 [Computer software manual]. Retrieved from http://

CRAN.R-project.org/package¼lme4(R package version 1.1-7)

Beal, S., Sheiner, L., Boeckmann, A., & Bauer, R. (1989–2009). NONMEM user’s guides

[Computer software manual]. Ellicott City, MD: ICON Development Solutions.

Betancourt, M. (2013). Generalizing the no-U-turn sampler to Riemannian manifolds.

arXiv, 1304.1920. Retrieved from http://arxiv.org/abs/1304.1920

Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1994). A limited memory algorithm for bound

constrained optimization. SIAM Journal on Scientific Computing, 16, 1190–1208.

Gay, D. M. (2005). Semiautomatic differentiation for efficient gradient computations. In

H. M. Bücker, G. F. Corliss, P. Hovland, U. Naumann, & B. Norris (Eds.), Automatic

differentiation: Applications, theory, and implementations (Vol. 50, pp. 147–158).

New York, NY: Springer. doi:10.1007/3-540-28438-9_13

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).

Bayesian data analysis (3rd ed.). London, England: Chapman & Hall/CRC Press.

Gelman, A., Vehtari, A., Jylänki, P., Robert, C., Chopin, N., & Cunningham, J. P. (2014).

Expectation propagation as a way of life. arXiv, 1412.4869.

Ghitza, Y., & Gelman, A. (2014). The great society, Reagan’s revolution, and generations

of presidential voting. To be submitted.

Griewank, A., & Walther, A. (2008). Evaluating derivatives: Principles and techniques of

algorithmic differentiation (2nd ed.). Philadelphia, PA: Society for Industrial and

Applied Mathematics (SIAM).

Stan: A Probabilistic Programming Language

12

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

Hoffman, M. D., & Gelman, A. (2014). The No-U-turn sampler: Adaptively setting path

lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15,

1593–1623. Retrieved from http://jmlr.org/papers/v15/hoffman14a.html

Kucukelbir, A., Ranganath, R., Gelman, A., & Blei, D. M. (2015). Automatic varia-

tional inference in Stan. Neural Information Processing Systems, 2015. [arXiv

1506.03431]

Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation

matrices based on vines and extended onion method. Journal of Multivariate Analysis,

100, 1989–2001.

Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolu-

tion, critique and future directions. Statistics in Medicine, 28, 3049–3067.

Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). Winbugs—A Bayesian

modeling framework: Concepts, structure, and extensibility. Statistics and Comput-

ing, 10, 325–337.

Martin, A. D., Quinn, K. M., & Park, J. H. (2011). MCMCpack: Markov chain Monte

Carlo in R. Journal of Statistical Software, 42, 22. Retrieved from http://www.jstatsoft.

org/v42/i09/

Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American

Statistical Association, 44, 335–341.

Muthén, L., & Muthén, B. (1998–2011). Mplus user’s guide (6th ed.) [Computer software

manual]. Los Angeles, CA: Author.

Neal, R. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. L.

Jones, & X.-L. Meng (Eds.), Handbook of Markov chain Monte Carlo (pp. 116–

162). Chapman and Hall/CRC, London.

Patil, A., Huard, D., & Fonnesbeck, C. J. (2010). PyMC: Bayesian stochastic modelling in

Python. Journal of Statistical Software, 35, 1–81.

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using

Gibbs sampling. In Proceedings of the 3rd international workshop on distributed sta-

tistical computing (Vol. 124, p. 125). Technische Universität Wien, Vienna, Austria.

Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2005). Maximum likelihood estimation of

limited and discrete dependent variable models with nested random effects. Journal of

Econometrics, 128, 301–323.

Raudenbush, S., Bryk, A., & Congdon, R. (2004). HLM 6 for windows [Computer soft-

ware manual]. Skokie, IL: Software International.

Stan Development Team. (2015). Stan modeling language users guide and reference man-

ual, version 2.6.0 [Computer software manual]. Retrieved from http://mc-stan.org/

Vanhatalo, J., Riihimäki, J., Hartikainen, J., Jylänki, P., Tolvanen, V., & Vehtari, A.

(2013). GPstuff: Bayesian modeling with Gaussian proceesses. Journal of Machine

Learning Research, 14, 1175–1179.

Authors

ANDREW GELMAN is a professor of statistics and political science at Columbia Univer-

sity, New York, NY 10027, gelman@stat.columbia.edu. His research interests include

statistical modeling, computing, graphics, and applications to social science and public

health.

Gelman et al.

13

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

DANIEL LEE is a statistician and software designer at Columbia University, New York,

NY 10027, bearlee@alum.mit.edu. His research interests include statistical modeling,

computing, and software design.

JIQIANG GUO is a statistician at NPD Group, New York, NY 10010, guojq28@gmail.com.

His research interests include hierarchical modeling and statistical computing.

Manuscript received May 28, 2015

Revision received July 15, 2015

Accepted August 6, 2015

Stan: A Probabilistic Programming Language

14

 at University of Vermont on November 17, 2015http://jebs.aera.netDownloaded from

http://jebs.aera.net

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

