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Now collect coefficients containing ¢* to obtain a new inverse gamma

density,
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Thus, conditioned on a specific value of the mean, the posterior variance is
also inverse gamma. As before, the shape of the distribution depends on both
the prior and the likelihood. The inverse gamma distribution is sharply peaked
when its parameter values are large. Both parameter values are sums of a prior
parameter and terms that increase with sample size. As seen in the previous
example, the prior has impact when prior parameter values are small relative

to the amount of data.
Example 4.2. Dispersal studies can involve a Gaussian dispersal kernel for the
scatter of seeds about a parent plant (e.g., Clark et al. 1998). In this case, the

mean of the distribution is known (at distance zero), and we seek to estimate
the variance. A dispersal kernel is two-dimensional. For a normal dispersal

kernel with no directional bias, we have
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Note that the normalization constant for this bivariate density has units of
distance 2. To simplify, replace the Cartesian coordinates with distance from

source,
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