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Stretched words like ‘heellllp’ or ‘heyyyyy’ are a regular feature of spoken language, often used to
emphasize or exaggerate the underlying meaning of the root word. While stretched words are rarely
found in formal written language and dictionaries, they are prevalent within social media. In this
paper, we examine the frequency distributions of ‘stretchable words’ found in roughly 100 billion
tweets authored over an 8 year period. We introduce two central parameters, ‘balance’ and ‘stretch’,
that capture their main characteristics, and explore their dynamics by creating visual tools we call
‘balance plots’ and ‘spelling trees’. We discuss how the tools and methods we develop here could be
used to study the statistical patterns of mistypings and misspellings and be used as a basis for other
linguistic research involving stretchable words, along with the potential applications in augmenting
dictionaries, improving language processing, and in any area where sequence construction matters,
such as genetics.

I. INTRODUCTION

Watch a soccer match, and you are likely to hear an
announcer shout ‘GOOOOOOOOOAAAAAAAAL!!!!!!’.
Vowel lengthening and consonant lengthening (called
gemination) is a feature of some languages and can
change a word, including its meaning [1]. Stretched
words, as in the example above, sometimes called elon-
gated words [2], are also an integral part of many lan-
guages, especially in spoken language. However, rather
than completely changing the meaning of the word, this
stretching, also called word lengthening [3], expressive
lengthening [4, 5], or use of letter repetitions [6], is often
used to modify the meaning of the base word in some
way, such as to strengthen the meaning (e.g., ‘huuu-
uuge’), imply sarcasm (e.g., ‘suuuuure’), show excite-
ment (e.g., ‘yeeeessss’), or communicate danger (e.g.,
‘nooooooooooooo’). We will refer to words that are
amenable to such lengthening as ‘stretchable words’.

However, despite their being a fundamental part of
spoken language, stretched words are rarely found in lit-
erature and lexicons: There is no ‘hahahahahahaha’ in
the Oxford English Dictionary [7]. Book appearances are
few, and only really occur in fictional dialogue [8]. How-
ever, with the advent and rise of social media, stretched
words have finally found their way into large-scale writ-
ten text.

With the increased use of social media comes rich
datasets of a linguistic nature, granting science an
unprecedented opportunity to study the everyday linguis-
tic patterns of society. As such, in recent years there have
been a number of papers published that have used data
from social media platforms, such as Twitter, to study
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different aspects of language [3, 5, 9–23].
Some recent studies have also begun to look at stretch-

able words [3–6, 8, 18–20, 24–27]. In his paper about
emoticons, Schnoebelen looked at the differences between
Twitter users who include a nose with their emoticon
faces and those who do not. He found that, in general,
users with noseless emoticons tended to have less formal
writing, including an increased use of stretched words
compared to users who included noses with their emoti-
cons. The users who included a nose tended to use more
standard writing, including fewer stretched words [5].

Eisenstein listed stretched words as one of many types
of “bad language” found on social media that cause issues
when trying to process text, and commented on some
of the issues with the current proposed methods of nor-
malization and domain adaptation to help with language
processing [4].

Brody and Diakopoulos looked at stretched words in
a small Twitter dataset, finding they are quite abun-
dant and that there is a strong correspondence between
stretched words and words that provide sentiment. They
also proposed a method of automatically finding and clas-
sifying new sentiment bearing words using this connec-
tion [3]. Some other studies have also looked at stretch-
able words in relation to sentiment analysis of text [18–
20, 27].

Kalman and Gergle studied how stretched words serve
as an analogue to nonverbal cues, such as phoneme exten-
sion, in an older set of email messages. They found that
most of the stretched letters correspond to articulable
phonemes and onomatopoeic words make up a sizable
portion of their list of stretchable words [6]. Howev-
er, preliminary results also show that these computer-
mediated communication (CMC) cues are going through
an evolutionary process wherein they are losing their
direct link to nonverbal cues and are developing char-
acteristics and an identity of their own [6, 8, 26].

In this paper, we begin a far more comprehensive
study of stretchable words within social media. We
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use an extensive set of social media messages collect-
ed from Twitter—tweets—to investigate the character-
istics of stretchable words used in this particular form
of written language. We perform a thorough search for
stretched words, allowing for many more possible ways
of stretching words than the previous studies do, collect-
ing a much larger and more complete set of stretchable
words.

The tools and approach we introduce here allow us
to discover some of the basic characteristics of stretch-
able words and form a foundation for further linguistic
research. They also have many other potential applica-
tions, including the possible use by dictionaries to for-
mally include this intrinsic part of language. The online
dictionary Wiktionary has already discussed the inclu-
sion of some stretched words and made a policy on what
to include [28, 29]. Some other potential applications
include the use by natural language processing software
and toolkits, search engines, and by Twitter to build bet-
ter spam filters.

We structure our paper as follows: In Sec. II, we
detail our dataset and our method of collecting stretch-
able words and distilling them down to their ‘kernels’.
In Sec. III A, we examine the frequency distributions for
lengths of stretchable words. We quantify two indepen-
dent properties of stretchable words: Their ‘balance’ in
Sec. III B and ‘stretch’ in Sec. III C. In Sec. III D, we
develop an investigative tool, ‘spelling trees’, as a means
of visualizing stretchable words involving a two charac-
ter repeated element. We comment on mistypings and
misspellings in Sec. III E. Finally, in Sec. IV, we provide
some additional discussion and concluding remarks.

II. DESCRIPTION OF THE DATASET AND
METHOD FOR EXTRACTING STRETCHED

WORDS

The Twitter dataset we use in this study comprises a
random sample of approximately 10% of all tweets (the
‘gardenhose’ API) from 9 September 2008 to 31 Decem-
ber 2016. In order to remain compliant with Twitter’s
API, we do not share the individual messages we use.
However, any good sample of tweets over the same time
period should provide similar results.

We limit our scope to tweets that either were
flagged as an English tweet or not flagged for any lan-
guage. All tweets in this time period have a max-
imum length of 140 characters. To collect stretch-
able words, we begin by making all text lowercase and
collecting all tokens within our dataset from calendar
year 2016 that match the Python regular expression
r‘(\b\w*(\w)(\w)(?:\2|\3){28,}\w*\b)’. This pattern
will collect any token with at least 30 characters that
has a single character repeated at least 29 times consec-
utively, or two different characters that are repeated in
any order at least 28 times, for a total of at least 30 con-
secutive repeated occurrences of the two characters. The

choice of 28 in the regular expression is a threshold we
chose with the goal of limiting our collection to tokens of
words that really do get stretched in practice.

After collecting these tokens, we remove any that con-
tains a character that is not a letter ([a-z]), and distill
each remaining token down to its ‘kernel’. Table I gives
a few examples of this distillation process. Proceeding
along the token from left to right, whenever any pair
of distinct letters, l1 and l2, occur in the token where
(1.) l1 occurs followed by any sequence of l1 and l2 of
total length at least three, and (2.) such that l1 and l2
each occur at least twice in the sequence, we replace the
sequence with the ‘two letter element’ (l1l2). For exam-
ple, see the first cell in Table I.

1. hahhahahaahahaa
→ (ha)

2. gooooooaaaaaaal
→ g[o][a]l

3. ggggoooooaaaaallllll
→ [g][o]aaaaallllll
→ [g][o][a][l]

4. bbbbbaaaaaabbbbbbyyyyyyy
→ [b][a][b]yyyyyyy
→ [b][a][b][y]

5. awawawaaawwwwwesssssommmmmeeeeee
→ (aw)esssssommmmmeeeeee
→ (aw)essssso[m][e]
→ (aw)e[s]o[m][e]

TABLE I. Examples of distilling tokens down to their kernels.
The first line of each cell is the example token. The following
lines show the result after every time a replacement of char-
acters by the corresponding single letter element(s) or double
letter element is made by the code, in order. The final line of
each cell gives the resulting kernel for each example.

In certain cases we distill the token to a kernel that
is less general. These cases that are exceptions to the
preceding are: (1.) The case where the sequence is a series
of l1 followed by a series of l2, which is replaced with the
pair of ‘single letter elements’ [l1][l2]. For example, see
the second cell in Table I. And (2.), the case where the
sequence is a series of l1 followed by a series of l2 followed
by a series of l1, which is replaced with [l1][l2][l1]. For
example, see the first step in the fourth cell of Table I
where ‘bbbbbaaaaaabbbbbb’ is replaced with [b][a][b].

Following this process, whenever a single letter, l3,
occurs two or more times in a row, we replace the
sequence with the single letter element [l3]. For exam-
ple, see the last step of the fourth cell in Table I where
‘yyyyyyy’ is replaced with [y], or the last step in the fifth
cell where ‘sssss’ is replaced with [s].

We collected tokens in batches of seven consecutive
days at a time throughout 2016 (with the last batch being
only two days). If a kernel is not found in more than
one batch, or within the same batch but from at least
two distinct stretched words, then it is removed from
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consideration.
Different but related stretched words (that is, differ-

ent stretched words, but both stretched out versions of
the same base word) may distill to different kernels. We
combine these into a single, more general kernel for each
word such that it covers all cases observed in the collect-
ed tokens. For example, for the two stretched versions
of ‘goal’, ‘goooalll’ and ‘goaaaallllllll’, the first would
distill to the kernel g[o]a[l] and the second would dis-
till to go[a][l]. These two kernels would be combined as
g[o][a][l].

Similarly, the kernels h[a] and (ha) would be combined
as (ha) as the set of tokens represented by (ha) is a super-
set of the set of the tokens represented by h[a]. Tokens
that match h[a] must have one ‘h’ followed by one or
more ‘a’s whereas tokens that match (ha) are anything
that start with an ‘h’ that is then followed by any num-
ber of ‘h’s and ‘a’s, in any order, as long as there is at
least one ‘a’.

After processing our dataset, we obtained a collec-
tion of 7,526 kernels. We then represented each ker-
nel with a corresponding regular expression and col-
lected all tokens in our entire gardenhose dataset that
matched the regular expressions. To go from the kernel
to the regular expression, we replaced ] with ]+, replaced
(l1l2) with l1[l1l2]*l2[l1l2]*, and we surrounded the ker-
nel with word boundary characters \b. So, for example,
the kernel g[o][a][l] goes to the Python regular expres-
sion r‘\bg[o]+[a]+[l]+\b’ and the kernel (ha) goes to the
Python regular expression r‘\bh[ha]*a[ha]*\b’.

Once we collected all tokens matching our kernels, we
carried out a final round of thresholding on our kernel
list, removing those with the least amount of data and
least likely to represent a bona fide stretchable word. For
each kernel, we calculated the token count as a function
of token length (number of letters) for all tokens match-
ing that kernel. For example, Fig. 1 gives the plot of the
token count distribution for the kernel (to). Then, with
the token counts in order by increasing token length, as
in Fig. 1, we found the location of the largest drop in
the log10 of token counts between two consecutive val-
ues within the first 10 values. That is, if we let fl be
the token count for tokens of length l, and let the ker-
nel length (smallest token length) be `, then we find the
token length, ldrop, where this largest drop occurs as

ldrop = argmax
`≤l≤`+9

log10 fl − log10 fl+1. (1)

We call the words with lengths coming before the loca-
tion of the drop (l ≤ ldrop) ‘unstretched’ versions of the
kernel and those that come after (l > ldrop) ‘stretched’
versions. For most kernels, the largest drop will be
between the first and second value. However, for some
kernels this drop occurs later. For example, in Fig. 1 we
see that for the kernel (to), which covers both the com-
mon words ‘to’ and ‘too’, this drop is between the sec-
ond and third value (between tokens of length three and
four; ldrop = 3). Thus, the unstretched versions of (to)
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FIG. 1. Token count distribution for the kernel (to). The
horizontal axis represents the length (number of characters),
l, of the token and the vertical axis gives the total number of
tokens of a given length that match this kernel, fl. The includ-
ed statistics give the kernel rank, r (see Sec. II), the value of
the balance parameter (normalized entropy, H; see Sec. III B),
and the value of the stretch parameter (Gini coefficient, G;
see Sec. III C) for this kernel. The large drop between the sec-
ond and third points denotes the change from ‘unstretched’
versions of (to), located to the left of this drop, to ‘stretched’
versions of (to), located to the right of this drop.

are represented by the first two points in Fig. 1, with the
remaining points representing stretched versions of (to).

We then ranked the kernels by the sum of the token
counts for their stretched versions,

ns =

140∑
l=ldrop+1

fl. (2)

Fig. 2 shows this sum as a function of rank for each ker-
nel. Inspired by the idea of a cutoff frequency [30], we
estimate a cutoff rank for the kernels. Using the val-
ues between rank 10 and 103, we found the regression
line between the log10 of the ranks and the log10 of the
summed token counts (straight line, Fig. 2). We calcu-
lated the cutoff as the first rank (after 103) where the
summed token count is less than 1/10 of the correspond-
ing value of the regression line. That is, if we let α and
β be the slope and intercept paramters calculated dur-
ing regression, and ns,r be the total number of stretched
tokens for the kernel at rank r, then we find the smallest
r such that r > 103 and

ns,r <
10βrα

10
(3)

as our rank cutoff. This occurs at rank 5,164, which
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FIG. 2. Total token counts for stretched versions of all ker-
nels. Kernels are ranked by their descending total token count
along the horizontal axis. The diagonal line gives the regres-
sion line calculated using the values between ranks 10 and
103. The vertical dashed line denotes the first location after
rank 103 where the distribution drops below 1/10 of the cor-
responding value of the regression line, denoted by the red
interval, giving the cutoff rank for the final threshold to decide
which kernels to include in this study.

is shown by the vertical dashed line in Fig. 2. For the
remainder of this study, we used the kernels with rank
preceding this cutoff, giving us a total of 5,163 kernels,
and, unless otherwise specified, a kernel’s ‘rank’, r, refers
to the rank found here.

Note that we are using a rough guide to find a prac-
tical cutoff for the number of kernels we include in our
study. While we are finding a linear fit as part of this pro-
cess, this token count distribution is not some archetypal
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FIG. 3. Token count distribution for the kernel [g][o][a][l].
The horizontal axis represents the length (number of char-
acters), l, of the token and the vertical axis gives the total
number of tokens of a given length that match this kernel,
fl. See Fig. 1 caption for details on the included statistics.
The base version of the word appears roughly 100 times more
frequently than the most common stretched version.

power-law. We merely use the regression line as a ref-
erence from which to calculate a drop analogous to the
process of finding a cutoff frequency, and the precise cut-
off is not particularly important. The cutoff rank is not
used in the statistics of any individual kernel, and for
the analyses that examine how stretchable words behave
as a function of kernel rank, the resultant figures and
statistics will only be affected at the margin of the cutoff
rank. An alternative might be to simply pick a cutoff
rank based on visual inspection of Fig. 2 or to pick a
lower bound for the data amount (token count sum, ns),
and find which rank falls below that bound.

See Online Appendix A at http://compstorylab.org/
stretchablewords/ for a full list of kernels meeting our
thresholds, along with their regular expressions and oth-
er statistics discussed throughout the remainder of this
paper.

III. ANALYSIS AND RESULTS

A. Distributions

For each kernel, we plotted the corresponding distribu-
tion of token counts, fl, as a function of token length, l.
Most of the distributions largely follow a roughly power-
law shape. For example, Fig. 3 gives the frequency dis-
tribution for the kernel [g][o][a][l]. From the elevated fre-

http://compstorylab.org/stretchablewords/
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FIG. 4. Token count distribution for the kernel (ha). The
horizontal axis represents the length (number of characters),
l, of the token and the vertical axis gives the total number of
tokens of a given length that match this kernel, fl. See Fig. 1
caption for details on the included statistics.

quency of the first dot, we can see that the unstretched
word ‘goal’ is used about two orders of magnitude more
frequently than any stretched version. After the first
point, we see a rollover in the distribution, showing that
if users are going to stretch the word, they are more like-
ly to include a few extra characters rather than just one.
We also see that there are some users who indeed fill the
140 character limit with a stretched version of the word
‘goal’, and the elevated dot there suggests that if users
get close to the character limit, they are more likely to
fill the available space. The other dots elevated above
the trend represent tokens that likely appear in tweets
that have a small amount of other text at the beginning
or end, such as a player name or team name, or, more
generally, a link or a user handle.

In Fig. 4, we show the frequency distribution for the
kernel (ha) as an example of a distribution for a two char-
acter repeated element. For this distribution we observe
an alternating up and down in frequency for even length
tokens and odd length tokens. This behaviour is typical
of distributions with a two character repeated element,
likely resulting from an intent for these tokens to be a
perfect alternating repetition of ‘h’ and ‘a’, hahaha. . . ,
to represent laughter. Under this assumption, the correct
versions will be even length. Then, any incorrect version
could be odd or even length depending on the number of
mistakes. We look at mistakes further in Sec. III E.

We note that there is also an initial rollover in this
distribution, showing that the four character token, with
dominant contributor ‘haha’, is the most common version

for this kernel. We also again see some elevated counts
near the tail, including for 140 characters, along with
some depressed counts just short of 140, which again sug-
gests that when users approach the character limit with
stretched versions of (ha), they will most likely fill the
remaining space. We did not perform a detailed analysis
of this area, but it is likely that the other elevated points
near the end are again due to the inclusion of a link or
user handle, etc. Similarly, the general flattening of the
distribution’s right tail is likely a result of random lengths
of short other text combined with a stretched word that
fills the remaining space.

These distributions tend to generally follow Zipf’s
brevity law, or law of abbreviation, which states that
more frequent words tend to be shorter [31, 32]. This
law has been found to hold for many different languages,
and possibly even for communication between other pri-
mates [31–36]. However, we find this law is not always
strictly followed. Many of the distributions do have a
rollover for the shorter word lengths, as seen in the two
examples shown in Figs. 3 and 4. If the brevity law is
a result due in part to efficiency, then our counterex-
ample observations may simply imply the existence of
another constraint being optimized. Perhaps the rollover
results from a balance between efficiency (keeping the
word short) and novelty (stretching to distinguish from
the base word). Additional letters avoid the appearance
of a mistyping and make the word stand out more visu-
ally.

Similar distributions for each kernel can be found
in Online Appendix B at http://compstorylab.org/
stretchablewords/.

B. Balance

For each kernel, we measure two quantities: (1.) The
balance of the stretchiness across characters, and (2.) the
overall stretchiness of the kernel. To measure balance,
we calculate the average stretch of each character in the
kernel across all the tokens within a bin of token lengths.
By average stretch of a character, we mean the average
number of times that character appears. That is, if we
let ci,j,k be the number of times character i was repeated
in token k of bin j and let Nj be the number of tokens
in bin j, then the average stretch of character i in bin j,
ci,j , is given by

ci,j =

∑Nj

k=1 ci,j,k
NJ

. (4)

Fig. 5 shows the balance for the kernel [g][o][a][l] par-
titioned into bins of logarithmically increasing sizes of
length. The horizontal dashed lines represent the bin
edges. The distance between the solid diagonal lines rep-
resents the average stretch, or average number of times
each character was repeated, ci,j , and are plotted in the
same order that they appear in the kernel. From this fig-
ure we see that ‘g’ is not stretched much on average, ‘o’

http://compstorylab.org/stretchablewords/
http://compstorylab.org/stretchablewords/
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FIG. 5. Balance plot for the kernel [g][o][a][l]. The vertical
axis represents the length (number of characters) of tokens,
and is broken into bins of lengths, with boundaries denoted by
horizontal dashed lines, which increase in size logarithmically.
For all the tokens that match the kernel and fall within a bin
of lengths, the average number of times each character was
stretched in those tokens was calculated, and is shown on the
plot as the distance between two solid lines in the same order
as in the kernel. Thus, for a given bin, the distance between
the vertical axis and the first solid line is the average stretch
for the letter ‘g’, the distance between that first line and the
second line is the average stretch for the letter ‘o’, and so
on. For example, the last bin contains tokens with lengths in
the interval [131, 140], with average length roughly 137. On
average, tokens falling in this most celebratory bin contain
roughly 3 ‘g’s, 57 ‘o’s, 41 ‘a’s, and 36 ‘l’s.

is stretched the most, and ‘a’ and ‘l’ are both stretched
around 2/3 as much as ‘o’.

When part of the kernel is a two letter element of the
form (l1l2), we still count the number of occurrences of l1
and l2 corresponding to this element in the kernel sepa-
rately, even though the letters can be intermingled in the
stretched word. When we display the results, we display
it in the same order that the letters appear in the kernel.
So in Fig. 6, which shows the results for the kernel (ha),
the first space represents the average stretch for ‘h’ and
the second space is for ‘a’. From this figure, we can see
that the stretch is almost perfectly balanced between the
two letters on average.

Similar balance plots can be found for each ker-
nel in Online Appendix C at http://compstorylab.org/
stretchablewords/. In general, for these balance plots,
we stop plotting at the first bin with no tokens, even if
later bins may be nonempty.

For each kernel, we also calculate an overall measure
of balance. To do this, we begin by binning the tokens

FIG. 6. Balance plot for the kernel (ha). See the Fig. 5 cap-
tion for plot details. For two letter elements, even though the
letters can alternate within a given token, we still count the
number of occurrences for each letter separately and display
the average number of total repetitions in the same order as
the letters appear in the kernel. Thus, for a given bin, the
distance between the vertical axis and the first line is the aver-
age number of times the letter ‘h’ occurred in the tokens, and
the distance between that first line and the second line is the
average number of times the letter ‘a’ occurred in the token.
This plot clearly shows that (ha) is well balanced across all
bins of token lengths.

by length, where unlike for the balance plots, each length
is its own bin; we do not group multiple lengths into the
same bin here. Then, for each bin (containing tokens
longer than the kernel) we calculate the average stretch
for each character across tokens within the bin, ci,j as
before. Then, we subtract one from each of these val-
ues (removing the contribution from each base charac-
ter; counting just the number of times each character
was repeated) and normalize the values so they sum to 1
and can be thought of like probabilities,

pi,j =
ci,j − 1∑`

i=1 (ci,j − 1)
, (5)

where ` is the number of characters in the kernel. We
then average the probabilities across the bins, weighing
each bin equally,

pi =

∑b
j=1 pi,j

b
, (6)

where b is the number of bins. Finally, as our overall
measure of balance, we compute the normalized entropy,

http://compstorylab.org/stretchablewords/
http://compstorylab.org/stretchablewords/


7

H, of the averaged probabilities,

H =
−
∑`
i=1 pi log2 pi
log2 `

. (7)

This measure is such that if each character stretches
the same on average, the normalized entropy is 1, and
if only one character in the kernel stretches, the normal-
ized entropy is 0. Thus, higher entropy corresponds with
more balanced words. (For a comparison with an alter-
nate entropy measure where tokens contribute equally
rather than equally weighing each length bin, and an
explanation of the different corresponding views, see S1
Appendix.)

Fig. 7 shows two ‘jellyfish plots’ [37] for balance.
Fig. 7A is the version containing all words and for Fig. 7B
we remove the words that have a value of exactly 0 for
entropy. The top of the plot in Fig. 7A shows the frequen-
cy histogram of the normalized entropy for each kernel.
The spike containing value 0 comes largely from kernels
where only one character stretches, giving that kernel an
entropy of exactly 0. The main plot shows the normalized
entropy values as a function of word rank, where rank is
given, as before, by the sum of stretched token counts.
The ‘tentacles’ give rolling deciles. That is, for rolling
bands of 500 words by rank, the deciles 0.1, 0.2, . . . , 0.9
are calculated for the entropy values, and are represented
by the solid lines.

These jellyfish plots are useful in that they not only
show the full frequency distribution, as provided by the
histogram on their tops, but also allow us to see the sta-
bility of that distribution across ranks. The tentacle part
of the plots allows us to see if highly ranked, more com-
mon kernels are distributed similarly to low ranked, less
common kernels (tentacles fall fairly straight down), or
if the kernels have different characteristics at different
ranks (tentacles tend to drift left or right).

We can see from Fig. 7A that the distribution large-
ly shifts towards smaller entropy values with increasing
rank, mostly drawn in that direction by the kernels with
only a single letter that repeats and thus entropy exactly
0. For Fig. 7B, we remove all kernels with entropy 0.
Everything else remains the same, including the rank of
each kernel (we skip over ranks of removed kernels) and
the rolling bands of 500 kernels for percentile calculations
still have 500 kernels, and thus tend to be visually wider
bands. In contrast to Fig. 7A, we now see a small left-
shift in the earlier ranks, and then the distribution tends
to stabilize for lower ranks. This shows that the highest
ranked kernels tend to have a larger entropy, meaning
the stretch of the kernel is more equally balanced across
all characters. We also see that not many of the high
ranked words stretch with just one character. It appears
that these kernels that stretch in only a single character
become more prevalent in the lower ranks.

Table II shows the kernels with the ten largest
entropies and Table III shows those with the ten small-
est nonzero entropies. We observe that the kernels with
largest entropies are mostly of the form (l1l2) and are
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FIG. 7. Jellyfish plots for kernel balance for (A) all kernels,
and (B) excluding kernels with entropy exactly 0. Corre-
sponding histograms are given at the top of each plot. Ker-
nels are plotted vertically by their rank, r, and horizon-
tally by their balance as given by normalized entropy, H,
where larger entropy denotes increased balance. The deciles
0.1, 0.2, . . . , 0.9 are calculated for rolling bins of 500 kernels
and are plotted as the ‘tentacles’.

almost perfectly balanced. The least balanced kernels
tend to be more recognizable English or Spanish words
and names, with one exclamation also appearing in the
bottom ten.
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H Kernel Example token

1 0.99998 (kd) kdkdkdkdkdkdkd

2 0.99998 (ha) hahahahahaha

3 0.99997 [i][d] iiiiiiiddddd

4 0.99997 (ui) uiuiuiuiuiui

5 0.99997 (ml) mlmlmlmlmlmlml

6 0.99995 (js) jsjsjsjsjsj

7 0.99990 [e][t] eeeeetttttt

8 0.99988 (ox) oxoxoxoxoxox

9 0.99980 (xq) xqxqxqxqxqxqxq

10 0.99971 (xa) xaxaxaxaxaxa

TABLE II. Top 10 kernels by normalized entropy, H.

H Kernel Example token

1 0.01990 [b][o][b]ies booooooobies

2 0.02526 [d][o][d]e doooooooode

3 0.03143 infini[t][y] infinityyyyy

4 0.03342 che[l]se[a] chelseaaaaaa

5 0.03587 tay[l]o[r] taylorrrrrr

6 0.03803 f(re) freeeeeeeeeeeee

7 0.03930 [f]ai[r] fairrrrrrrr

8 0.05270 regr[e][s][e] regreseeeeee

9 0.05271 herm[a][n][a] hermanaaaaaaaa

10 0.05323 sq[u][e] squueeeeeeee

TABLE III. Bottom 10 kernels by normalized entropy, H.

C. Stretch

To measure overall stretchiness for a kernel we calcu-
lated the Gini coefficient, G, of the kernel’s token length
frequency distribution. (For a comparison with anoth-
er possible measure of stretch, see S2 Appendix.) If the
distribution has most of its weight on the short versions
and not much on stretched out versions, then the Gini
coefficient will be closer to 0. If more tokens are long
and the kernel is stretched longer more often, the Gini
coefficient will be closer to 1. Fig. 8 gives the jellyfish
plot for the Gini coefficient for each kernel. The horizon-
tal axis has a logarithmic scale, and the histogram bins
have logarithmic widths. From this plot, we see that the
distribution for stretch is quite stable across word ranks,
except for perhaps a slight shift towards higher Gini coef-
ficient (more stretchiness) for the highest ranked kernels.

Table IV shows the top 10 kernels ranked by Gini coef-
ficient and Table V shows the bottom 10. The top kernel
is [k], which represents laughter in Portuguese, similar
to (ha) in English (and other languages). Containing a
single letter, [k] is easier to repeat many times, and does
not have an unstretched version that is a common word.
We also see (go)[l] on the list, where ‘gol’ is Spanish and
Portuguese for ‘goal’. Interestingly, (go)[l] has a much
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FIG. 8. Jellyfish plots for kernel stretch as measured by the
Gini coefficient, G, of its token count distribution, where high-
er Gini coefficient denotes increased stretch. The histogram
is given at the top of the plot (with logarithmic width bins).
Kernels are plotted vertically by their rank, r, and horizon-
tally (on a logarithmic scale) by their stretch. The deciles
0.1, 0.2, . . . , 0.9 are calculated for rolling bins of 500 kernels
and are plotted as the ‘tentacles’.

higher Gini coefficient (G = 0.5171) than [g][o][a][l] does
(G = 0.1080). The kernels with lowest Gini coefficient
all represent regular words and all allow just one letter
to stretch, which does not get stretched much.

G Kernel Example token

1 0.66472 [k] kkkkkkkkkkkkkkk

2 0.63580 [w][v][w] wwwwwwwwwwvwwww

3 0.62843 [m][n][m] mmmmmmmmmmmmnm

4 0.53241 [o][c][o] oooooooooco

5 0.52577 wa(ki) wakikikikkkikikik

6 0.51706 (go)[l] goooooooooool

7 0.51273 [m][w][m] mmmmmwmmmmmmmmm

8 0.50301 galop[e]ir[a] galopeeeeira

9 0.50193 [k][j][k] kkkkkjjkkkkkkkkkk

10 0.49318 [i][e][i] iiiiiieeiiiiiii

TABLE IV. Top 10 kernels by Gini coefficient, G.

In Fig. 9, we show a scatter plot of each kernel where
the horizontal axis is given by the measure of balance
of the kernel using normalized entropy, and the vertical
coordinate is given by the measure of stretch for the ker-
nel using the Gini coefficient. Thus, this plot positions
each kernel in the two dimensional space of balance and
stretch. We see that the kernels spread out across this
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G Kernel Example token

1 0.00001 am[p] amppppppppp

2 0.00002 m[a]kes maaaaaaaaakes

3 0.00002 fr[o]m frooooooooooom

4 0.00002 watch[i]ng watchiiiiiing

5 0.00003 w[i]th wiiiiiiiith

6 0.00004 pla[y]ed playyyyyyed

7 0.00004 s[i]nce siiiiiiiince

8 0.00006 eve[r]y everrrrrrrrrry

9 0.00006 manage[r] managerrrrr

10 0.00007 learnin[g] learninggggg

TABLE V. Bottom 10 kernels by Gini coefficient, G.

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Entropy, H (Balance)

10-5

10-4

10-3

10-2

10-1

100

G
in

i 
C

o
e
ff

ic
ie

n
t,

 G
 (

S
tr

e
tc

h
)

FIG. 9. Kernels plotted in Balance-Stretch parameter space.
Each kernel is plotted horizontally by the value of its balance
parameter, given by normalized entropy, H, and vertically
(on a logarithmic scale) by its stretch parameter, given by
the Gini coefficient, G, of its token count distribution. Larg-
er entropy implies greater balance and larger Gini coefficient
implies greater stretch.

space and that these two dimensions capture two inde-
pendent characteristics of each kernel.

We do note that there are some structures visible in
Fig. 9. There is some roughly vertical banding. In
particular, the vertical band at H = 0 is from kernels
that only allow one character to stretch and the vertical
band near H = 1 is from kernels where all characters
are allowed to stretch and do so roughly equally, which
especially occurs with kernels that are a single two letter
element. Fainter banding around H ≈ .43, H ≈ .5, and
H ≈ .63 can also be seen. This largely comes from ker-

nels of length 5, 4, and 3, respectively, that allow exactly
two characters to stretch and those characters stretch
roughly equally. If the stretch was perfectly equal, then
the normalized entropy in each respective case would
be H = 1/ log2(5) ≈ .43, H = 1/ log2(4) = .5, and
H = 1/ log2(3) ≈ .63.

D. Spelling trees

So far we have considered frequency distributions for
kernels by token length, combining the token counts for
all the different words of the same length matching the
kernel. However, different tokens of the same length
may of course be different words—different stretched
versions—of the same kernel. For kernels that contain
only single letter elements, these different versions may
just have different amounts of the respective stretched
letters, but all the letters are in the same order. However,
for kernels that have two letter elements, the letters can
change order in myriad ways, and the possible number of
different stretched versions of the same length becomes
much larger and potentially more interesting.

In order to further investigate these intricacies, we
introduce ‘spelling trees’ to give us a visual method of
studying the ways in which kernels with two letter ele-
ments are generally expanded. Fig. 10 gives the spelling
tree for the kernel (ha). The root node is the first letter
of the two letter element, which in this case is ‘h’. Then,
recursively, if the next letter in the word matches the
first letter of the pair, it branches left, represented by a
lighter gray edge, and if it matches the second letter of the
pair then it branches right, represented by a darker gray
edge. This branching continues until the word is finished.
The first few nodes are highlighted with the letter corre-
sponding to that point of the tree. The edge weights are
logarithmically related to the number of tokens flowing
through them. So, a thicker edge represents that more
tokens pass through that edge than a thinner edge does.
In Fig. 10, a few nodes, denoted by stars, are annotated
with the exact word to which they correspond. The anno-
tated nodes are all leaf nodes, but words can, and most
do, stop at nodes that are not leaves. We also trimmed
the tree by only including words that have a token count
of at least 10,000. This threshold of pruning reveals the
general pattern while avoiding making the spelling tree
cluttered.

The spelling tree for (ha) has a number of interesting
properties. Most notable among them is the self-similar,
fractal-like structure. The main branch line dropping
down just right of center represents the perfect alternat-
ing sequence ‘hahahahaha. . . ’, as shown by the annotat-
ed example at the leaf of this line. There are also many
similar looking subtrees that branch off from this main
branch that each have their own similar looking main
branch. These paths that follow the main branch, break
off at one location, and then follow the main branch of
a subtree represent words that are similar to the perfect
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FIG. 10. Spelling tree for the kernel (ha). The root node represents ‘h’. From there, branching to the left (light gray edge) is
equivalent to appending an ‘h’. Branching to the right (dark gray edge) is equivalent to appending an ‘a’. The edge width is
logarithmically related to the number of tokens that pass along that edge when spelled out. A few example words are annotated,
and their corresponding nodes are denoted with a star. This tree was trimmed by only including words with a token count
of at least 10,000. The code used to create the figures for these spelling trees is largely based on the algorithm presented by
Wetherel and Shannon [38]. We note that Mill has written a more recent paper based largely on this earlier work specialized
for Python [39], and an implementation for it as well [40], but they both contain algorithmic bugs (detailed in S3 Appendix).

alternating laugh, but either have one extra ‘h’ (if the
branch veers left) or one extra ‘a’ (if the branch leads
right). For example, the middle left annotation shows
that the fourth letter was an extra ‘h’, and then the
rest of the word retained an accurate alternating pat-
tern. This word, ‘hahhahahahahahaha’, appeared 13,894
times in our dataset.

The tree also shows that ‘haaaaa. . . ’ is a strong pat-
tern, as can be seen farthest right in the (ha) spelling tree.
The subtrees on the right show that users also start with
the back and forth pattern for a stretch, and then fin-
ish the word with trailing ‘a’s. Many other patterns also
appear in this tree, and additional patterns are occlud-
ed by our trimming of the tree, but likely most of these
come from users trying to follow one of the patterns we
have already highlighted and introducing mistypings.

We made similar trees for every kernel that had a sin-
gle occurrence of a two letter element, where the tree
represents just the section of word that matches the two
letter element. These trees are trimmed by only includ-

ing words that have a token count of at least the fourth
root of the total token count for the stretched tokens.

Fig. 11 gives eight more examples of these spelling
trees. The trees for (ja) and (xo) have many of the same
characteristics as the tree for (ha), as do most of the trees
for kernels that are a two letter element where tokens
predominantly alternate letters back and forth. For the
tree for (xo), the pattern where the first letter of the two
letter element is stretched, followed by the second letter
being stretched, such as ‘xxxxxooooo’, is more apparent,
as seen by long stretches of just branching left followed by
long stretches of just branching right. This type of pat-
tern is even more notable in the trees for (aw), and espe-
cially (fu). The tree for (mo) has stretched versions for
both ‘mom’ and ‘moo’. Similarly, the tree for h(er) shows
stretched versions of both ‘her’ and ‘here’, where we see
that both ‘e’s and the ‘r’ all get stretched. In the tree for
(to), the word ‘totoo’ has a much larger token count then
words stretched beyond that (noticeable by the fact that
the edges leaving that node are much smaller than the
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edge coming in). The word ‘totoo’ is Tagalog for ‘true’.
Finally, every example tree here does show the back and
forth pattern to at least some extent. All of the trees
created are available for viewing in Online Appendix D
at http://compstorylab.org/stretchablewords/.

E. Mistypings

Mistypings appear often in tweets and we see evidence
of them in stretched words. For example, the kernel
n[o](io) is likely a result of mistypings of n[o]. On at
least some platforms, holding down the key for a letter
does not make that letter repeat, so one must repeatedly
press the same key. For the standard QWERTY key-
board layout, the letter ‘i’ is next to the letter ‘o’, so it
would be easy to accidentally press the letter ‘i’ occasion-
ally instead of ‘o’ when trying to repeat it many times,
especially on the small keyboards accompanying mobile
phones. This sort of thing could lead to a kernel like
n[o](io) when users try to stretch the word ‘no’. Simi-
larly, the letters ‘a’ and ‘s’ are next to each other on a
QWERTY keyboard, so a kernel like (ha)s(ha)(sh)(ah)
likely comes from mistypings of the much simpler kernel
(ha).

However, it is not always clearly apparent if a kernel
is from mistypings or on purpose, or perhaps comes as
a result of both. For example, the letter ‘b’ is close to
the letter ‘h’, so the kernel (ha)b(ah) could come from
mistypings of (ha). But, this form could also be inten-
tional, and meant to represent a different kind of laugh-
ter. For example, (ba)(ha) is a highly ranked kernel (rank
211) representing a comedically sinister kind of laughter.
Similarly, (ja) is a core component of laughter in Span-
ish, but ‘j’ is next to ‘h’ on the QWERTY keyboard,
so it is not apparent if a kernel like (ha)j(ah)(ja)(ha)
comes from mistypings or from switching back and forth
between English and Spanish as the word stretches.

Our methodology may enable further study of mistyp-
ings. For example, Fig. 12 shows the distribution, bal-
ance plot, and spelling tree for the kernel n[o](io). The
distribution shows that it is not a strong kernel, with the
lower rank of 4,858, compared to a rank of 8 for (no).
The balance plot shows that the letter ‘i’ is not stretched
much, and the spelling tree shows that the word is mostly
just a repetition of ‘o’s. On the whole, the evidence sug-
gests that the kernel n[o](io) is mainly a result of mistyp-
ings.

These tools can also be used to help study what are
likely misspellings, rather than mistypings. For example,
Fig. 13 shows the spelling tree for the kernel hear(ta)ck
(which does not actually fall within our rank cutoff, as
described in Sec. II, but provides a good example). The
word ‘attack’ has two ‘t’s. Thus, the word ‘heartattack’
(if written as one word; usually it is two) should, under
normal spelling, have a double ‘t’ after the second ‘a’.
From Fig. 13 we can see from the weights of the branches
that it is often written as ‘heartatack’, with a single ‘t’

instead of the double ‘t’.

IV. CONCLUDING REMARKS

In this paper, we have studied stretched words, which
are often used in spoken language. Until the advent of
social media, stretched words were not prevalent in writ-
ten language and largely absent from dictionaries. The
area of stretchable language is rich, and we have discov-
ered that these words span at least the two dimensional
parameter space of balance and stretch.

As we mentioned in the beginning, there are many rea-
sons why in spoken language people stretch a word, often
done to increase the expressiveness of the word. When
stretched words first started showing up in written forms
of communication, they seemed to be mainly a direct
written representation of spoken stretched words [6, 8]
and even the few that showed up in literature mainly
showed up during the dialogue in fiction, again showing
this direct correspondence to spoken language [8]. Over
time, these forms of expressive written language have
become more common, especially in less formal contexts
and with younger users [5]. Even this reflects spoken lan-
guage, where we have developed gestures and expressions
and other nonverbal visual clues that we use during our
informal speech that are not seen as much in more for-
mal speech contexts, as used by, for example, traditional
news anchors [8].

As they have become more common, there is evidence
that written stretchable words have begun to take on
a life of their own, and are losing some of their direct
connection to their spoken counterpart [6, 8, 26]. One
clue to this is which letters are stretched. In their main
study on email messages, Kalman and Gergle found that
most of the stretching was articulable, but in a small
exploratory study at the end with blog posts they found
an increase in stretching that is inarticulable and also
especially found a general increase in the stretching of
the last letter of words [6].

An initial look at our findings supports these stud-
ies. Our data covers from the earlier days of Twitter
through 2016 and thus likely includes any changes in the
use of stretchable words. We certainly see, especially
from the balance plots, that articulable parts of words
get stretched a lot, as if mimicking spoken stretching,
but we also see stretching that is inarticulable. For exam-
ple, looking at Fig. 5, we see that the plosive ‘g’ is not
stretched as much as the articulable ones, but it certainly
exists. Furthermore, the balance plots for [p][l][e][a][s][e]
and [h][e][l][p] (available in Online Appendix C) show
a lot of stretching for the final ‘e’ and ‘p’ even though
both are inarticulable. In particular, for ‘please’ the final
‘e’ is by far the most stretched letter. This aligns with
what Kalman and Gergle found when looking at stretch-
ing ‘please’ and ‘help’ in blogs [6].

This evidence, along with the initial findings of others,
suggests that stretchable words have grown to be more of

http://compstorylab.org/stretchablewords/


12

t o
t

t oo t

(to)

A

jj aaj aj

(ja)

B

wa wa
a

wa

(aw)

C

d
d

d
o

d o o

(do)

D

ee r
re

e

r

h(er)

E

f
ff f uu u

(fu)

F

m
mm oo om

(mo)

G

o ox oxx x

(xo)

H

FIG. 11. A collection of example spelling trees. From left to right, top to bottom, trees for the kernels (to), (ja), (aw), (do),
h(er), (fu), (mo), and (xo).
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14

t

a

a

t

t

at

hear(ta)ck

FIG. 13. Spelling tree for the kernel hear(ta)ck. From
this tree, we can see the relative number of times the word
‘heartatack’ is written rather than ‘heartattack’, indicating a
common misspelling.

a visual cue as well. Stretched words tend to stand out
more. Some tweets are comprised of a single stretched
word. We also saw tweets where the author was pleading
to a particular celebrity, asking that celebrity to follow
them, where every letter of the tweet was stretched, in
an apparent attempt to stand out and be noticed. We
did see from the jellyfish plots of balance in Sec. III B
that the highest ranked kernels, that is, the kernels that
are stretched the most often, tended to be more balanced
than average.

It would be interesting to study these things fur-
ther, such as the distinction between visual and pho-
netic stretching or how the patterns of stretching have
changed over time or differ across geographic regions. We
have developed the methods here that would allow for a
much more in depth study of these and other linguis-
tic research questions. Looking at what parts of words,
such as the end of words, or which letters, or class of
letters (e.g., comparing vowels and consonants or stops
and fricatives) get stretched more, would also be inter-
esting. Other studies could include comparing stretching
across different grammatical or semantic classes of words
or looking at changes in stretching patterns across differ-
ent communication media (e.g., comparing Twitter and
emails).

The tools we have developed not only help uncover the
hidden dynamics of stretchable words, but can be further
applied to study phenomena such as mistypings and mis-
spellings, and possibly more. Online dictionaries, such as
the Wiktionary [41], could use our kernels as a general
entry for each type of stretchable word, and include the
balance and stretch parameters as part of their struc-
tured word information, as they do, for example, with
part of speech.

Searching for stretched words, as we discovered dur-
ing the course of our research for this study, is not easy.
Search engines do not do well with stretched words. They
may be able to find a specific word that is given to them,
but if trying to find stretched versions of a particular
word in general, they suffer. Again, the use of our ker-
nels could help here as a more general way of searching
and indexing.

It is known that natural language processing (NLP)
can be hard with social media because of the nonstandard
language that is often used [4, 21–23]. Natural language
processing software and toolkits could use the techniques
we developed to help with processing stretched words.
For example, stretched words could first be distilled to
their kernels, and the base word could be extracted from
that. Then other processing, such as part of speech tag-
ging, could be applied to the base word. Similarly, spell
checking software may be able to use our methods to help
prevent marking stretched words as misspellings. Our
procedures could also be used to help prevent typosquat-
ting [42]. Twitter could use our methods to help improve
their spam filter, looking for slight variations of tweets.
Also, spelling trees could more generally be used to ana-
lyze the construction of any sequence, such as genome
sequences.

However, much more could be done. We have restrict-
ed our study to words containing only Latin letters.
Future work could extend this to include all charac-
ters, including punctuation and emojis. We also lim-
ited the way we constructed kernels, focusing only on
one and two letter elements. This can be expanded
to three letter elements and possibly beyond to capture
the characteristics of words like ‘omnomnomnom’. Fur-
thermore, our methodology for creating kernels leads to
situations where, for example, we have both (ha)g(ah)
and (ha)(ga)(ha) as kernels. Expanding to three letter
elements and beyond in the future could collapse these
forms, and related kernels, into a kernel like (hag).

Along with more advanced kernels, similar but more
advanced spelling trees could be developed. We only cre-
ated spelling trees for kernels with a single two letter
element. Future work could explore kernels with more
than two letter elements. They could also be created for
every kernel, where the branching of even the single let-
ter elements is shown, where one branch would signify
the repetition of that letter and the other branch would
signify moving onto the next letter of the kernel. Further-
more, to go with three letter elements, ternary trees could
be developed. Among other things, this would reveal
mistypings like (ha)(hs), for example, if this became a
kernel with a three letter element like (has), and we
assume that the ‘s’ is mostly a mistyping of the letter ‘a’
in the kernel (ha). This situation should be discernible
from the case where the word ‘has’ is stretched.

Finally, our methodology could be used to explore
linguistic and behavioral responses to changes in Twit-
ter’s protocol (e.g., character length restrictions) and
platform (e.g., mobile vs. laptop). For example, what
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are the effects of auto-correct, auto-complete, and spell
check technologies? And what linguistic changes result
from platform restrictions such as when a single key
cannot be held down anymore to repeat a character?
Also, we only considered tweets before the shift from
the 140 to 280 character limit on Twitter. Some initial
work indicates that the doubling of tweet length has
removed the edge effect that the character limit creates
[43]. Further work could study how this change has
affected stretchable words, and in particular, the tail of

their distributions.
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2016.

[35] Stuart Semple, Minna J. Hsu, and Govindasamy Ago-
ramoorthy. Efficiency of coding in macaque vocal com-
munication. Biology Letters, 6(4):469–471, 2010.

[36] Stuart Semple, Minna J. Hsu, Govindasamy Agoramoor-
thy, and Ramon Ferrer-i-Cancho. The law of brevity in
macaque vocal communication is not an artifact of ana-
lyzing mean call durations. Journal of Quantitative Lin-
guistics, 20(3):209–217, 2013.

[37] Isabel M. Kloumann, Christopher M. Danforth,
Kameron Decker Harris, Catherine A. Bliss, and
Peter Sheridan Dodds. Positivity of the English language.
PLOS ONE, 7(1):1–7, 01 2012.

[38] Charles Wetherell and Alfred Shannon. Tidy drawings
of trees. IEEE Transactions on Software Engineering,
(5):514–520, 1979.

[39] Bill Mill. Drawing presentable trees. Python Magazine,
2(8), 08 2008.

[40] Bill Mill. Github — llimllib/pymag-trees: Code from
the article “Drawing good-looking trees” in Python Mag-
azine. https://github.com/llimllib/pymag-trees/tree/
9acfb8d52a09a495f25af91dcbf438499546748b. Accessed:
2019-01-21.

[41] Wiktionary, the free dictionary. https://en.wiktionary.
org/wiki/Wiktionary:Main Page. Accessed: 2019-05-12.

[42] Typosquatting — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=
Typosquatting&oldid=884561229. Accessed: 2019-05-
12.
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Appendix A: Alternate Balance Measure

As a comparison to our normalized entropy measure
for balance discussed in Sec. III B, we also compute an
alternate normalized entropy measure, Halt, that mea-
sures balance from a different view.

To compute Halt, we first calculate the overall aver-
age stretch for each character as before, but now do so
across all tokens at once. Then, we subtract one from
each of these values and normalize them so they sum
to 1 and can be thought of like probabilities. We then
compute the normalized entropy, Halt, of these values
as a measure of overall balance. Halt is similar to H
in that if each character stretches the same on average,
the normalized entropy is 1, and if only one character in
the kernel stretches, the normalized entropy is 0. Again,
higher entropy corresponds with more balanced words.

The difference is the view, and what is meant by ‘on
average’. For Halt, each token is weighted equally when
calculating balance. Thus, this measure corresponds to
the view of if one randomly samples tokens and looks at
how balanced they are on average.

By contrast, for H, as calculated in Sec. III B, tokens
are grouped by length, and then each group gets an equal
weight regardless of the group size. This view looks at
how well balance is sustained across lengths, and cor-
responds to sampling tokens by first randomly picking
a length, and then randomly picking a token from all
tokens of that length, and then looking at how balanced
the sampled tokens are on average.

FIG. A1. Balance plot for the kernel (pa). See the Fig. 6
caption for plot details. Even though Halt = 1.00000 for
(pa), this plot clearly shows perfect balance is not sustained
as tokens increase in length.
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FIG. A2. Jellyfish plots for kernel balance based on an alter-
nate entropy measure for (A) all kernels, and (B) excluding
kernels with entropy exactly 0. Corresponding histograms are
given at the top of each plot. Kernels are plotted vertically
by their rank, r, and horizontally by their balance as given by
an alternate normalized entropy, Halt, where larger entropy
denotes increased balance. The deciles 0.1, 0.2, . . . , 0.9 are
calculated for rolling bins of 500 kernels and are plotted as
the ‘tentacles’.

For example, for the kernel (pa), Halt = 1.00000, sig-
nifying nearly perfect balance. However, looking at the
balance plot for (pa) in Fig. A1, we see that perfect bal-
ance is not sustained across lengths. Because most of the
tokens are short, and short stretched versions of (pa) are
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Halt Kernel Example token

1 1.00000 (ba) baaaaaaaaaaa

2 1.00000 (pa) ppppppppppppa

3 1.00000 (uo) uouuuuuuuuuuuuu

4 0.99998 (pr) prrrrrrrrrrr

5 0.99998 (du) duduudduududududuuu

6 0.99995 (xa) xaxaxaxaxxa

7 0.99995 (ai) aaaaaaaaaaaaaaaai

8 0.99993 (he) hehehheheheh

9 0.99986 (bi) biiiiiiiiii

10 0.99985 (wq) wqwqwqwqwqw

TABLE A1. Top 10 kernels by an alternate normalized
entropy, Halt.

Halt Kernel Example token

1 0.00115 [t][e][t]h teeeeeeeeeth

2 0.00119 f[e]l[i]ng feeeeeeling

3 0.00170 c[a][l]ing calllllling

4 0.00196 a[c]ep[t] accepttttttt

5 0.00197 fa[l][i]ng falllllling

6 0.00217 hi[l]ar[y] hilllllaryy

7 0.00227 m[i][s][i]ng missssssssssing

8 0.00271 ba[n]e[d] baneddddddddd

9 0.00277 t[h][r][e] threeeeeeeee

10 0.00302 th(er) therrrreeeee

TABLE A2. Bottom 10 (nonzero) kernels by an alternate
normalized entropy, Halt.

well balanced, all of the weight is on the well balanced
short ones when randomly picking tokens. However, as
people create longer stretched versions of (pa), they tend
to use more ‘a’s than ‘p’s, and near perfect balance is
not maintained. This is better captured by the measure
H = 0.80982.

As our main measure of balance, we chose the view
better representing how well balanced tokens are as they
are stretched, equally weighing lengths. This does have
the limitation that groups of tokens with different lengths
have different sizes, and some of them may contain a sin-
gle token, possibly increasing the variance of the mea-
sure. It is possible this could be improved in the future
by only including lengths that have a certain number of
examples, or possibly creating larger bins of lengths for
the longer tokens like we do in the balance plots.

We include the same plots and tables for Halt as we
did with H, and many of the observations are similar.
Fig. A2 shows the two jellyfish plots for Halt. Similar to
before, Fig. A2A is the version containing all words and
for Fig. A2B we remove the words that have a value of 0
for entropy. The top of the plots in Fig. A2 shows the fre-

quency histograms in each case. As before, after remov-
ing kernels with an entropy of 0, we see a small left-shift
in the highest ranked kernels, and then the distribution
largely stabilizes. Again, the highest ranked kernels tend
to be more equally balanced, and kernels only stretching
a single character tend to be lower ranked.

Table A1 shows the kernels with the ten largest
entropies and Table A2 shows those with the ten small-
est nonzero entropies as measured in this alternate way.
We observe that the kernels with largest entropies are all
of the form (l1l2) and are almost perfectly balanced giv-
en the view of equally weighing all tokens. The kernels
with lowest entropies all expand to regular words that
when spelled in the standard way contain a letter that is
repeated, plus these kernels allow other letters to stretch.

Finally, Fig. A3 shows the scatter plot of each kernel
where the horizontal axis is given by this alternate mea-
sure of balance, Halt, and the vertical coordinate is again
given by the measure of stretch for the kernel using the
Gini coefficient, G. We again see that the kernels span
the two dimensional space.

We still get the same kind of rough vertical banding
that we saw in Fig. 9 for the same reason, but we also see
a curved dense band at lower entropy values, which seems
to mostly contain kernels whose base word is spelled with
a double letter, like ‘summer’ (with kernel [s][u][m][e][r]).
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FIG. A3. Kernels plotted in Balance-Stretch parameter space
using an alternate measure of normalized entropy for balance.
Each kernel is plotted horizontally by the value of its balance
parameter, given by an alternate normalized entropy, Halt,
and vertically (on a logarithmic scale) by its stretch param-
eter, given by the Gini coefficient, G, of its token count dis-
tribution. Larger entropy implies greater balance and larger
Gini coefficient implies greater stretch.
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Appendix B: Stretch Ratio

For each kernel, we also measure a ‘stretch ratio’, ρ.
This is simply the ratio of the total number of stretched
tokens, ns, to the total number of unstretched tokens, nu,
for that kernel. That is,

ρ =
ns
nu
. (B1)

Fig. B1 gives the jellyfish plot for the stretch ratio. Like
Fig. 8, the horizontal axis has a logarithmic scale and
the histogram bins have logarithmic widths. The stretch
ratio distribution stays fairly stable across ranks, except
for the highest ranked kernels, which tend to have a larger
ratio.

This stretch ratio can be thought of as a simple mea-
sure for the stretchiness of a kernel, with a larger ratio
representing stretchier words. As stretched versions of
the word are used more, the numerator increases and
the ratio value increases. Conversely, as unstretched
versions of the kernel are used more, the denominator
increases, and the ratio value decreases. However, this
simpler measure uses less information from the full dis-
tribution than a measure like the Gini coefficient does,
so we would expect some differences between the two.
Indeed, Fig. B2 shows that there are some kernels for
which the two measures seem to disagree. Yet, Fig. B2
shows that the stretch ratio and Gini coefficient are quite
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FIG. B1. Jellyfish plots for kernel stretch ratio, ρ, as given by
the ratio of the sum of the kernel’s stretched tokens to the sum
or its unstretched tokens. The histogram is given at the top
of the plot (with logarithmic width bins). Kernels are plotted
vertically by their rank and horizontally (on a logarithmic
scale) by their stretch ratio. The deciles 0.1, 0.2, . . . , 0.9 are
calculated for rolling bins of 500 kernels and are plotted as
the ‘tentacles’.
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FIG. B2. Scatter plot of measures of stretch for each kernel.
For each kernel, the horizontal axis gives its stretch as mea-
sured by the Gini coefficient, G, of its token count distribution
and the vertical axis gives its stretch ratio, ρ. Both axes have
a logarithmic scale.

ρ Kernel Example token

1 76.04717 s[o][c][o][r][o][k] socorrokkkkkk

2 29.94863 mou(ha) mouhahahaha

3 21.93369 p[f](ha) pffhahahaha

4 19.82821 bu(ha) buhahahahaha

5 15.15702 (ha)j(ah)(ja)(ha) hahahahajahajaha

6 10.32701 pu(ha) puhahahahaa

7 8.63055 (ha)(ba)(ha) habahahhaha

8 8.47429 (ha)b(ha) hahahhahabha

9 8.13269 (ah)j(ah) ahahahjahah

10 7.72953 a[e]h[o] aehooooooooooooo

TABLE B1. Top 10 kernels by stretch ratio, ρ.

well correlated, with Pearson correlation coefficient 0.89
(p < 10−100), so there is not much gained by including
both. We choose to use the Gini coefficient as our main
measure of stretchiness both because of its wide usage
and because of the fact that it uses more information
from the full distribution than the simpler stretch ratio.

Table B1 shows the top 10 kernels by stretch ratio and
Table B2 gives the bottom 10. The correlation between
stretch ratio and Gini coefficient, at least for the least
stretchy kernels, can be seen further when comparing this
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ρ Kernel Example token

1 0.00002 am[p] amppppppppp

2 0.00004 fr[o]m froooooooom

3 0.00004 m[a]kes maaaaaaakes

4 0.00007 w[i]th wiiiiiiiiiiiiith

5 0.00009 eve[r]y everrrrrrrrrry

6 0.00011 p[r]a prrrrrrrrrrra

7 0.00011 watch[i]ng watchiiiing

8 0.00011 s[i]nce siiiiiiiince

9 0.00012 pla[y]ed playyyyyyyed

10 0.00012 vi[a] viaaaaaaaaaaaaaaa

TABLE B2. Bottom 10 kernels by stretch ratio, ρ.

to Table V. Many of the kernels that show up as the
least stretchy words (lowest Gini coefficients) also show
up here in the list of kernels with smallest stretch ratio.
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Appendix C: “Drawing presentable trees” algorithmic bugs

Wetherel and Shannon presented an algorithm for
drawing large trees in a nice way in their paper “Tidy
drawing of trees” [38]. The article “Drawing presentable
trees” [39] by Mill and related code [40], based largely on
the earlier work of Wetherel and Shannon, provide a ver-
sion of the algorithm written in the Python syntax, but
both the article and the code contain algorithmic bugs.
In the following, we present the bugs we found.

We will discuss Listing 5 in Mill’s paper [39], as that
is the version that most closely resembles Algorithm 3 of
Wetherel’s and Shannon’s paper [38], which is what our
code to create the spelling trees is based off of.

In Listing 5, the definition of setup contains the code:

elif len(tree.children) == 1:
place = tree.children[0].x - 1

This needs to be split into a left case and a right case. If
the only child node is a left child, then the parent should
be placed to the right by one, and if the only child node
is a right child, then the parent should be placed to the
left by one. The DrawTree class needs a way to tell if a
node has a left or right child. Let us assume the class
DrawTree has an attribute left properly implemented
that is set to True iff the node has a left child. Then the
code should be something more like the following:

elif len(tree.children) == 1:
if tree.left:

place = tree.children[0].x + 1
else:

place = tree.children[0].x - 1

Compare the above fix to the corresponding code in the
right visit case in the first while loop in Algorithm 3
in “Tidy drawing of trees” [38]:

elseif current↑.left_son = nil
then place := current↑.right_son↑.x - 1;

elseif current↑.right_son = nil
then place := current↑.left_son↑.x + 1;

Later in Listing 5 in the definition of setup is the
following line:

nexts[depth] += 2

However, we want the next available spot, recorded in
nexts, to be two spots to the right of the current place-
ment, and the current placement is sometimes different
from the current next available spot. Thus the line should
look something like the following:

nexts[depth] = tree.x + 2

Again, compare this to the corresponding code found
near the end of the right visit case of the first while
loop of Algorithm 3 in “Tidy drawing of trees”:

next_pos[h] := current↑.x + 2;

The final bug in Listing 5 is not an algorithmic bug,
but merely a typo. In the definition of addmods is the
line of code:

modsum += tree.offset

However, tree does not have the attribute offset.
Instead the mod attribute should be added to the accu-
mulated sum as follows:

modsum += tree.mod
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