Integrated Pest Management in Hemp

Scott Lewins
UVM Extension

Chris Motyka
Vermont Technical
College

Getting to know you

Who we are...

Who are you?

Integrated Pest Management

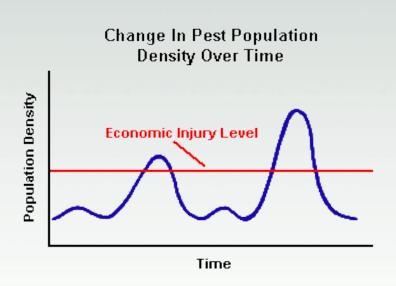
- Systems approach
- Uses complimentary tactics
- Maintains pests below "injurious" levels
- Minimizes impacts of activities

The Economics of Pest Management

- Injury physical harm or destruction caused by the presence or activities of a pest
- Damage monetary loss as a result of injury
 - How much loss is the pest causing?
 - How much will it cost to control the pest?

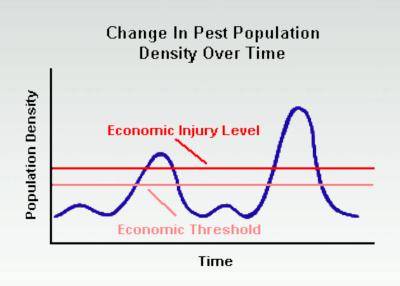
Example:

Strawberries



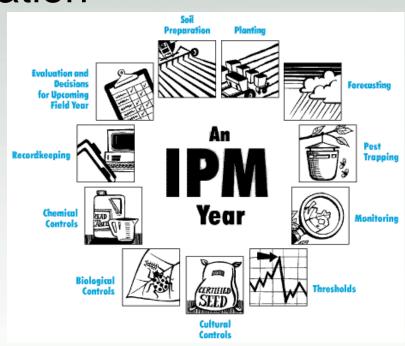
The Economics of Pest Management

 Economic injury level: cost to control = amount of damage caused



The Economics of Pest Management

- Economic injury level: cost to control = amount of damage caused
- Economic threshold: population density managed to prevent economic injury



Management, not eradication

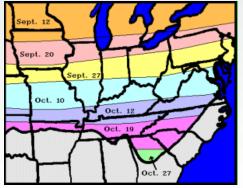
Proactive, not reactive Strong emphasis on

- Monitoring
- Cultural controls
- Mechanical controls
- Biological control

Sensible chemical control as a last resort

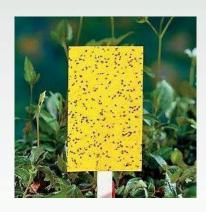
Pest <u>and</u> natural enemy identification is crucial for success

The more you know about pest and natural enemy biology the better



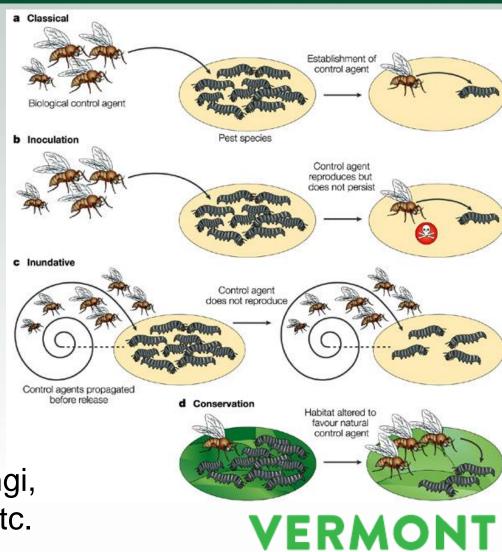
Cultural Control

- Resistant varieties
- Crop rotation
- Intercropping
- Sanitation
- Phenological asynchrony



Mechanical Control

- Tilling & Cultivating
- Hand Picking
- Sticky traps/fly paper
- Physical barriers
- Vacuuming



Biological Control 3 approaches

- Classical
- Augmentative
- Conservation

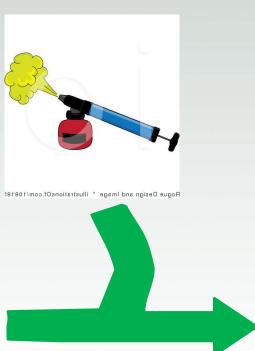
Biocontrol agents:

- predators
- parasitoids
- entomopathogenic fungi, nematodes, viruses, etc.

Chemical Control

- Contact insecticides
- Systemic insecticides
- Biopesticides
- Semiochemicals
- Chemosterilants
- Insect Growth Regulators

*The label is the law!



Chemical control as a last resort...

Aphids

- Give birth to live young: populations increase quickly
- Can develop wings when populations are dense and move to new areas
- Feed on plant sap and secrete honeydew
- Honeydew can lead to black sooty mold

Aphid Asexual Reproduction

- Genetic clones of mother
- Females are born pregnant

Things to look for

- Varnished
 appearance of leaves covered with honeydew
- White exoskeletons (molted skins)

Cannabis aphid (*Phorodon cannabis*)

ID Feature: stubby "horns" on forehead

The horns are visible with a hand lens

Two Spotted Spider Mite

- Sexual reproduction: Eggs round and translucent
- Adults and nymphs are small and live in colonies usually on undersides of leaves
- Prefer hot dry environments

Things to look for

Webbing

White specks or scars on

leaves

Hemp Russet Mite: A potential threat

- Not in Vermont yet?
- Almost microscopic
- Large populations can develop undetected
- Symptoms
 - Yellowing leaves
 - Leaf rolling
 - Loss of vigor

- CAREFULLY SCOUT ALL PURCHASED PLANT MATERIAL!!
- OUT OF STATE
 SEEDLING AND CLONE
 SOURCES COULD
 HARBOR THIS PEST!

Other Arthropod Pests

Other arthropod pest reported in greenhouses

- Western Flower Thrips
- Whiteflies
- Broad mites
- Fungus Gnats

MOSTLY AN ISSUE FOR GREENHOUSE PRODUCTION

DEVELOP AN IPM PROGRAM TO CONTROL

Other Arthropod Pests

Other arthropod pest reported in hemp fields

Hemp flea beetle

Hop aphids

Tarnished plant bugs

Grasshoppers

Bertha armyworm

Cutworms

Stink bugs

Japanese beetle

European corn Borer

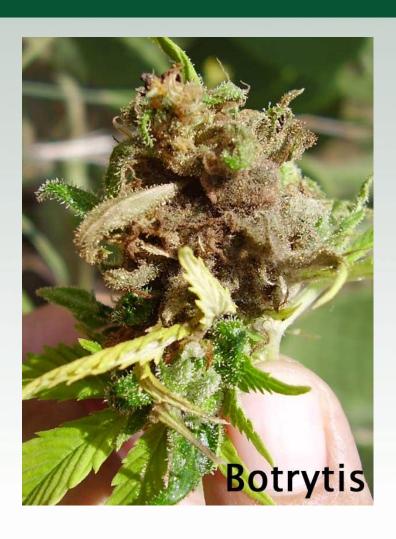
Hemp borer

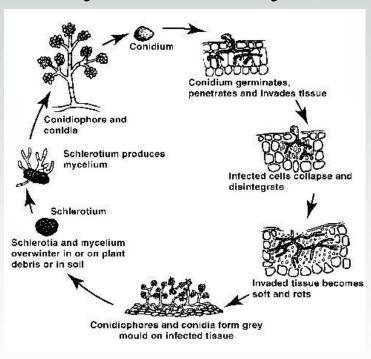
Powdery Mildew

Powdery Mildew Life Cycle

- Obligate parasite: NEEDS LIVE HOST TO SURVIVE
- Found on upper surface of leaf
- Free moisture inhibits infection
- Select resistance varieties
- Good aeration important
- Infected hemp can be extracted

Powdery Mildew progression


Botrytis (Grey Mold)


More Botrytis

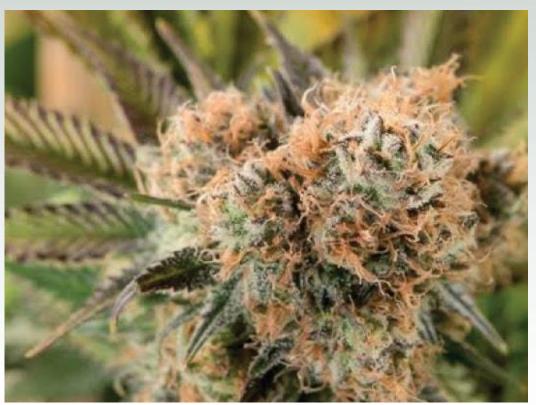
Botrytis Life Cycle

- Botrytis can live on living or dead plant tissue
- Botrytis kills host cells
- Infected tissue should not be extracted

Control Guidelines

Greenhouse

- Avoid wetting leaves
- Reduce RH below 65%
- Raise Temperature
- Remove plant debris
- Use sterile tools

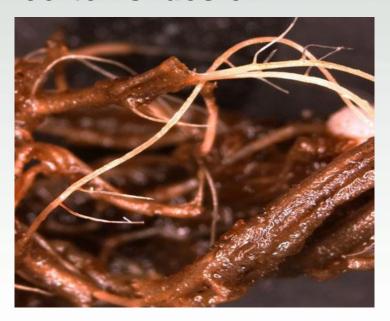

Field

- Provide adequate spacing
- Avoid wetting leaves when irrigating
- Remove plant debris

As flower buds mature, check for botrytis

Septoria leaf spot

- Provide adequate plant spacing
- Avoid splashing soil on leaves
- Use of plastic mulches can help
- Destroy effected plant debris at season's end



Pythium Root Rot An issue for seedlings and transplants

ID feature: Outer root cortex slides off

Pythium can also cause Damping Off

Good Sanitation Prevents Most Root Rots

 Take care with recirculated irrigation water Avoid overwatering

Clean all surfaces that roots will touch

Don't reuse media !!

- Sterilize all pots and tools after removing debris
- Wash hands after handling diseased roots

Thank You

Questions?

