On-Farm Pressing of Oilseeds for Fuel and Food

A NEWbio Webinar April 8, 2014

Chris Callahan

University of Vermont Extension chris.callahan@uvm.edu

Doug Schaufler

Pennsylvania State University dhs106@psu.edu

PENNSTATE

College of Agricultural Sciences

Outline

- Production & Processing From seed to oil
- Straight Vegetable Oil Using vegetable oil as a fuel
- Biodiesel

Converting vegetable oil to biodiesel

Culinary Oil

Considerations for production of food oils

Conversion of Oilseed Crops to Biodiesel and Other Products

What are Oilseeds?

Grains and Oilseeds: "Grains are identified as cereals suitable as food for human beings. Oilseeds are those grains that are also valuable for the oil content they produce."

Soybeans Canola **Sunflower** Camelina Crambe Flax Mustard Pennycress Rapeseed Safflower

Crop Production

- Not the focus of today's webinar
- Recently published handbook for Northeast Production

Darby, H., P. Halteman, and H. Harwood. 2013. **Oilseed Production in the Northeast: A Guide for Growers of Sunflower and Canola.** University of Vermont Extension Northwest Crops and Soils Program, St. Albans, VT

Available: <u>http://www.uvm.edu/extension/cropsoil/wp-</u> <u>content/uploads/OilseedManualFINAL.pdf</u>

Vermont Oilseed Crop Production Cost and Profit Calculator

USER INPUTS

4

6

(3)Y	ield	Typical	My Farm	
9	Yield (Seed)	1100	1200	dis (acre
	Oil Content	44%	40%	
	Test Weight	32	NA	the by they

Cost of Production		ypicat	M	y Earm	
Labon, fuel and materials should be included.	111 2.8	ch item, Eg	-	NAME FROM T	C.MI
Field Prep (plow & disk)	s	34,00	S	30.00	(10)
Fertilizer (applied)	\$	47.00	\$	20.00	ast
Seed	\$	25.00	\$	30.00	(10)
Planting	s	6.00	S	10.00	ash
Cultivating	s	8.00	\$	15.00	(10)
Spraying	s	20.00		NA	ast
Harvesting	\$	12.00	5	15.00	(action
Hauling	\$	1.00	S	5.00	ath
OR Total Cost of Production	\$	153.00	1	NA	(act)
Total Being used in Calculator			\$	145.00	(acts
Prod. Equip. Cost	5	20,000	5	50	
Prod. Equip. Life	_	20		1	years
OR Cost of Raw Seed	s	527.27		NA	/10/
Costs of Cleaning and Drying	1	typical	м	y Farm	
Harvast Moistura		1.4%		890	

Harvest Moisture		14%	1	8%
Storage Moisture		8%		8%
Cleaning Cost Factor		1.5		NA
Electricity Cost	5	0.13	S.	0.14
Labor Cost (Dry/Clean per to	0 \$	15,00	5	0.00
Cleaner Cost	5	4,000	5	2,000
Cleaner Life		30		40
Drier Cost	s	12,000	\$	2,000
Drier Life		20		30
Cost of Clean / Dry Seed	5	684.92	-	NA

GENERAL INSTRUCTIONS Enter any specific information you have regarding your farm's operation into the white boxes below. If you do not enter a value in the white box, the "typical" value to the left of it will be used. If you enter "0" instead of "NA" a value of zero will be used. "Typical" values are based on research and collection of data from participating farmers and other published resources and are provided for guidance only. Summary results are displayed on the right of the screen, and you can print a more detailed report by clicking "Print Detailed Report".

Cos	t of Pressing	T	ypical	M	ly Farm	
	Press Cost	5	4,000	\$	13,000	
	Press Life		20		20	years .
	Press Capacity		1.0		1.0	tony day
	Press Oil Efficiency		90%	1	100%	- 111 m 1 a
	Press Power Rating		7	1.	6.7	ĥР
	Labor Cost (per ton)	5	0,75	\$	20.00	non
OR	Overall Cost of Hired Pressing	S	37.14	\$	60.00	rtnn seed
OR	Cost of Purchased Oil	s	1.17		NA	igal.
	Amount of Purchased Oil				NA	gal/yr/

7)Cos	t of Biodiesel Production	Typical	. N	y Farm	
	Plant & Equip Cost	\$ 10,000	\$	20,000	
	Plant & Equip Life	30	1	30	VERTE
	Heating Cost	5 20.00		NA	(mill ET)
	Alcohol Cost	\$ 1.07	5	3.00	igat atc
	Alcohol Used	20%		20%	gal / gat i
	Lye Cost	\$ 0.80	5	1.50	10.74
	Lye Used	0.083		NA.	10 (gal 0
	Labor Cost (per gal)	\$ 0.10	\$	0.20	lost:
OR	Cost of Hired Production	S -		NA	inal the

Market Value of Products	Ŧ	ypical	My Farm	
Market Price for Seed	5	362	NA	tur
Market Price for Meal	5	139	NA	túr
Market Price for Oil	5	5.59	NA	01
Market Price for Off-Road Diesel	\$	2.24	NA	-
Net Market Value of Other Potential Bi	5	-	NA	an

	Ty	pical	My	Farm	
Value of Seed	5	199	\$	217)á
Value of Meal	s	43	5	50	10
Value of Oil	5	361	\$	358	5.
Value of Biodiesel	s	145	\$	143	1
Marketing split (oil vs. biodiesel)	Ty	pical	My	Farm	
Sell		0%	1	NA	ra
Convert remaining		100%		NA	10

	RESULTS	
Projected Costs	Typical	My

Vermant Socialisable Jubs Pund SAR

Farm

Incremental (cost for each	step)			
Cost of Production	\$	290	\$	187	acre .
	5	527	5	312	tion seed.
Cost of Cleaning/Drying	\$	87	\$	12	(acre)
	\$	158	5	20	room need.
Cost of Pressing	\$	20	\$	36	atre.
	5	.21	5	36	iton meal
	-§.	友打	5	. 90	1000 gal r
Cost of Biodiesel Production	\$	59	5	126	ARCENT.
	5	0.01	5	1.98	ical

Cumulative (total cost for each product)

VERMONT EXTENSION

Cost to Produce Seed	\$	377 \$	199
	5	685 \$	331
Cost to Produce Meal	\$	397 \$	235
	\$	206 \$	367
Cost to Produce Oil	\$	397 \$	235
	5	1.19 \$	0.59
Cost to Produce Biodiesel	S.	456 \$	361
	5	2.10 \$	2.56

ojected Profit / (Loss)	Typical	My Earm		
Seed Only (Clean and Dry)	(\$178)	\$18 /acm		
Meal Only	(\$354)	(\$185) /arm		
Oil Only	(\$36)	\$123 Jaco		
Meal & 100% Oil	\$7	\$173 Jacks		
Meal and 100% Biodiesel	(\$268)	(\$168) /acm		
Biodiesel Only	(\$311)	(\$218) Jacks		
Meal and Oil/Biodiesel split	(\$268)	(\$168) /404		
Seed Only (Clean and Dry)	(\$1,776)	\$184 total		
Meal Only	(\$3,544)	(\$1,848) total		
Oil Only	(\$361)	\$1,232 total		
Meal & 100% Oil	\$66	\$1,732 total		
Meal and 100% Biodiesel	(\$2,683)	(\$1,679) total		
Biodiesel Only	(\$3,111)	(\$2,179) total		
Meal and Oil/Biodiesel split	(\$2,683)	(\$1,679) recal		
Print Detailed Report	Cle	ar My Inputs		
See Instructions	Print Instructions			

Release 1.1 - 2010 September 13 (Working Draft)

Download at: http://www.vsjf.org/resources/reports-tools/oilseed-calculator

Outline

- Production & Processing *From seed to oil*
- Straight Vegetable Oil

Using vegetable oil as a fuel

• Biodiesel

Converting vegetable oil to biodiesel

Culinary Oil

Considerations for production of food oils

KernKraft 40 at Borderview Research Farm in Alburgh, VT.

"Screw "or "Worm" advances seed, pressing it against the backside of the die. Crushing it along the way. Oil and meal are separated by pressure.

Oil

Mea

The Cost Basis of Oil and Meal

Oil 0.38 ton oil per ton seed @ \$129 Oil @ \$340 per ton requires 2.63 ton seed (\$1.28 /gal)

Sunflower Seed 1 ton @ \$338/ton (38% oil, 62% meal) Pressing (@ \$2.36/ton) Cost of Pressed Seed is \$340/ton

Meal 0.62 ton meal per ton seed @ \$211

Meal @ \$340 per ton requires 1.61 ton seed

Press Evaluation

- Evaluated six farm-scale presses using a common protocol on three oilseed crops.
- Captured owner/operator feedback on press
- Measured
 - Press capacity at various speeds
 - Net oil yield at various speeds
 - Phosphorus at various speeds

C. Callahan & H. Harwood with H. Darby, R. Elias, D. Schaufler. <u>Small-Scale Oilseed</u> <u>Presses: An Evaluation of Six Commercially-Available Designs.</u> March 3, 2014. <u>Associated YouTube Video</u>, with L. Madden.

Press Evaluation

General Findings:

- Operation of a newly purchased press depends on a great deal of trial and error. Operators tips and tricks documented for each press.
- Press capacity depends on oilseed and is often different from published specifications.
- Max oil yield is generally below maximum press capacity, and there is a peak in the mid-range of pressing rate (speed).
- Phosphorus in oil declines with pressing rate (speed).

C. Callahan & H. Harwood with H. Darby, R. Elias, D. Schaufler. <u>Small-Scale Oilseed</u> <u>Presses: An Evaluation of Six Commercially-Available Designs.</u> March 3, 2014. <u>Associated YouTube Video</u>, with L. Madden.

"Net" Oil Yield (prior to settling)

Other Processing

- Depends on end use
 - Settling of bulk sediment
 - Filtration
 - RBD
 - Refined
 - Bleached
 - Deodorized
 - Convert to Biodiesel

Outline

Production & Processing

From seed to oil

• Straight Vegetable Oil Using vegetable oil as a fuel

• Biodiesel

Converting vegetable oil to biodiesel

Culinary Oil

Considerations for production of food oils

Mind the Difference -Biodiesel & SVO

Straight Vegetable Oil (SVO)

Animal Fat or Vegetable Oil

Transesterification using alcohol & catalyst

Straight Vegetable Oil as Engine Fuel

May require engine modifications
Oil heated to change the viscosity
Start engine on petro-diesel fuel
Shut down on petro-diesel fuel

Viscosity and fuel performance

Vegetable oils have high viscosity which may lead to injector coking and eventual engine failure.

Engine deposit buildups after running on straight soybean oil

Remmele • Thuneke P 06 K Th 012 Chart 23 Technologie- und Förderzentrum

Types of vegetable oils (per Elsbett) Canola or rapeseed..... Ok Sunflower..... Ok if degummed Soybean.... Not ok

Straight Vegetable Oil Tractors

- 2 new pieces of equipment running SVO
- Explored long term effects (up to 2000 hours) of SVO fuel

Fuel type (diesel or SVO) criteria

Sensors

Engine coolant temperature sensor Exhaust temperature sensor

Fuel switching logic

Overall SVO vs. Petro-diesel usage at Penn State

	NH T7060	Case 621E
	(1370 hours)	(1118 hours)
% SVO used of	Q5 º/	53%
total fuel use	0.5 /0	55 /0
Total SVO used	3428 gallons	796 gallons
Total diesel used	628 gallons	701 gallons

On-Farm Biodiesel Production

On-Farm Biodiesel Production

Making Biodiesel Transesterification Single Stage Base Method

State Line Farm

John Williamson - Shaftsbury, VT

Maple Sugar & Honey formerly a Dairy Farm

Oil Seeds since 2005

Operate at 2k gal/yr with ~300k gal/yr capacity

State Line Farm

Maple Sugar & Honey formerly a Dairy Farm

Oil Seeds since 2005

John Williamson - Shaftsbury, VT

Operate at 2k gal/yr with ~300k gal/yr capacity

Borderview Farm

Roger Rainville - Alburgh, VT

Crop Research Farm formerly a Dairy Farm

Oil Seeds since 2005

Establishing ~150k gal/yr capacity

Borderview Farm

Roger Rainville - Alburgh, VT

Crop Research Farm formerly a Dairy Farm

Oil Seeds since 2005

Establishing ~150k gal/yr capacity

Outline

- Production & Processing From seed to oil
- Straight Vegetable Oil Using vegetable oil as a fuel
- Biodiesel

Converting vegetable oil to biodiesel

Culinary Oil

Considerations for production of food oils

Another use for pressed oil:

Culinary or edible oils!

Source: Brett Jordan, Flickr Creative Commons, Jan 9, 2012

What's in canola oil?

in other words, 99% triglycerides and 1% "other stuff"

F.D. Gunstone. Rapeseed and Canola Oil. CRC Press. 2004

Why refine?

Outline

- Production & Processing From seed to oil
- Straight Vegetable Oil Using vegetable oil as a fuel
- Biodiesel

Converting vegetable oil to biodiesel

Culinary Oil

Considerations for production of food oils

Minor components (<1%) in canola

<u>Antioxidants</u>

- Tocopherols (vitamin E)
- Carotenoids (xanthophylls, lutein)

Pro-Oxidants

- Water
- Transition metals (Fe, Cu)
- Polar lipids
- Chlorophyll (chlorophyll a, chlorophyll b)

Ways to Slow the Road to Rancidity

- 1. Get rid of unsaturated fat portion
 - Hydrogenated oils (e.g., soybean oil to margarine) make liquid oils into hard fats; therefore more stable
- 2. Prevent or scavenge free radicals
 - Use antioxidants to bind
 - Prevent exposure to light (UV)
 - Avoid high temperatures
- 3. Limit exposure to oxygen
 - Minimize air (oxygen) exposure
 - Replace air (oxygen) with inert gases (N₂, CO₂, Ar)

Deodorized – removes odors

Commercial oils are RBD:

-Refined – removes particulates and gums

Covered in filtration earlier

Commercial oils are RBD:

Bleached – removes colorants

Not commonly or easily done on a small scale

Steam bubbled through oil under vacuum

Source of information for small-scale oilseed processing

http://www.uvm.edu/extension/cropsoil/oilseeds

Fact sheets on oilseed pressing, filtering, storage, processing regulations Comparison information for small oilseed presses Presentations from current and past oilseed conferences Yield results from oilseed crop field trials Articles looking at various aspects of oilseed growth and use **Backup Slides**

Cost Breakdown of Oilseed Crop Production VARIABLE COSTS ONLY

NH 7060: Power vs. RPM for Diesel and SVO December, 2011

