Milk Quality: It's the Little things

Linda Tikofsky, DVM

Agenda

- Why Milk Quality Matters
- Milk Quality: The Little Things that Matter
- Impacts of Prevention

Why Worry About Mastitis?

Milk quality regulatory issues

- Bulk milk Somatic Cell Counts (SCC): 750,000 cells/ml
- Bacteria count SPC:100,000 cfu
- Milk/meat Residues

Quality has Value

- Processor
 - Prolonged shelf life
 - Increased manufacturing yields
 - Improved product quality

Mastitis & Milk Quality

Component	Normal Milk	Mastitic Milk	% of normal
Total Solids	13.1	12.0	92%
Lactose	4.7	4.0	85
Fat	4.2	3.7	88
Chloride	0.091	0.147	161
Total Protein	3.6	3.6	100
Caseins	2.8	2.3	82
Whey proteins	0.8	1.3	162

Milk Quality and Shelf Life

Quality has Value

- Producer
 - \$/cwt (premiums/debits)
 - Increased production
 - Fewer culls & deaths
 - Less Labor

Costs Associated with Subclinical Mastitis

- Production loss
- Premium loss
- Transmission costs
- Culling

Table 4: Relationship between SCC, Linear Scores and Milk Yield Loss			
		Milk Loss for	Milk Loss for
SCC Midpoint (range)	Linear Score	Lact 1	Lact 2+
25,000 (18,000-34,000)	1	0	0
50,000 (35,000-68,000)	2	0	0
100,000 (69,000-136,000)	3	200 lb	400 lb
200,000 (137,000-273,000)	4	400 lb	800 lb
400,000 (274,000-546,000)	5	600 lb	1200 lb
800,000 (547,000-1,092,000)	6	800 lb	1600 lb
1,600,000 (1,093,000-2,185,000)	7	1,000 lb	2,000 lb

My Bulk Milk SCC is >400,000... or >200,000

Now what do I do???

Mastitis Detection

---seek and ye shall find---

Clinical

Grade I: abnormal milk
Grade II: abnormal milk,
abnormal quarter

Grade III: abnormal milk, abnormal quarter, abnormal cow

Subclinical

CMT testing

Individual SCC

DHIA

Delaval SCC

Porta SCC

Electrical conductivity

Culture

SCC Dynamics in the Herd

MASTG2: GRAPH LS BY PLS LCTGP FOR LACT>0\TZMP4			
	New	Chronic	Fresh
Top Herds	<5%	<u><</u> 5%	≤ 10%
OK Herds	~8%	~10%	~15%
Not OK herds	>9%	>10%	>18%
	3 4 Log Linear SCC @ Next2Las	5 6 7 st Test	8 9

Analyze High BMSCC--simplified

•Cull

The Little Things...

Mastitis is not a 'single issue' disease

1. Farm Specific Udder Goals

Criteria	Ideal Udder Health Targets
Bulk milk somatic cell count (SCC)	<200,000 cell/ml
Herd average (actual)	<200,000
Herd average (DHI Linear score)	<3.0 LS
100% of first calvers (DHI)	<100,000
>85% milking herd	<200,000
>95% milking herd	<500,000
Number of culls due to mastitis or other udder health problems	<5 cases/100 cows per year

1. Set Farm Specific Goals

1. Set Farm Specific Goals

Regular Udder Health Monitoring

- Detect problems/outbreaks early
- Early intervention for minimal loss of production and profit
- Monitoring systems can be quite simple or quite complex
- Your certification paperwork has already got you trained!

2. Regular Health Monitoring

- Milking is the time of greatest risk for new infections
- Consistency and a positive attitude go a long way in helping your cows milk
- Clean environment

Wear gloves.

Forestripping

- Removes milk in the teat end that is higher in bacteria and somatic cells
- Aids in the early detection of clinical mastitis.
- Helps stimulate milk letdown for faster and more complete milkout.

Adapted from The Bovine Udder and Mastitis, ed. Sandholm et al. 1995

Predip or Wash/Dry

- Dip should remain on teats for 20-30 sec for maximum bacterial kill
- Cup application preferred over spraying
- Non-return dipcup

Wipe dry

- Single service paper or cloth towels
- Cloth towels: Launder/Bleach/Spin or Launder/Heat dry
- Wet milking may result in liner slips

Post Milking Teat Dipping

The single most important procedure for controlling the spread of contagious mastitis.

Dip versus spray?

Milking order

- 1. Fresh heifers
- 2. Low SCC Cows
- 3. High SCC Cows
- 4. Contagious Mastitis Cows

4. Maintain Milking Equipment

- System airflow and reserve—is it adequate?
- Pulsation rates and ratios—are they consistent?
- Rubber parts—how often are they replaced?

5. Dry Cow Management

Dry Period Goals:

- Proper nutrition for calf development
- Prepare the mammary gland for the next lactation
- Resolve infections from the previous lactation
- Minimize metabolic problems in the next lactation

5. Dry Cow Management

5. Dry Cow Management

Giving the dry cow the upper hand (hoof)...

- Clean environment
- Dipping after dry off?
- Nutrition
 - Selenium/Vitamin E
 - o Trace minerals
 - Body condition
 - o Prevention of milk fever

5. Dry Cow (Transition) Management

- Ketosis: severity of coliform mastitis is increased (Kremer et al., 1993; Leslie et al., 2000)
- O Vitamin E/Selenium: supplementation reduces incidence and duration of clinical mastitis (Smith et al., 1984) and milk SCC (Moyo et al., 2005).
- Hypocalcemia
 - o Clinical: OR 5.4 (Curtis et al., 1985)
 - Subclinical: calcium supplemented cows had \u03c4 risk of mastitis (Domino et al., 2017)

Boehrin Ingelhei

 Association between teat canal diameter and subclinical hypocalcemia (Barragan et al., 2018)

6. Biosecurity

What are the risks for spreading disease within the farm?

7. Maintain a Healthy Environment

- Clean, dry and comfortable
- Properly sized stalls
- Ventilation
- Sunlight
- Bedding Source—which is best?
- Pasture access

7. Maintain a healthy environment

Why control flies?

- Nuisance
- Spread disease

Decreased production

8. Vaccination

- Use strategically
- Coliform mastitis:
 - 81% reduction in new cases
 - Vaccinates with clinical mastitis: more milk, less culling
- Staph aureus mastitis:
 - 50% reduction in SCC
 - 40% reduction in IMI
 - More milk

What's the impact of prevention?

Expert Ranking of Preventive Measures

Measure	100% Environmental	100% Contagious
Blanket Dry Cow Therapy	1	4
Post-dipping	2	2
Prevent overcrowding	3	14
Improve nutrition	4	8
Stall hygiene	5	12
Milk subclinical cows last	15	3
Back flushing cluster (SCM)	12	4
Milk clinical cows last	16	5

Effect of Intervention on Bulk Milk SCC Reduction (%)

Measure	Environmental	Contagious
Post milking teat dipping	33.84	36.16
Milk subclinical mastitis last	20.91	25.98
Appropriate dry cow minerals	20.89	20.18
Blanket dry cow treatment	18.69	21.10
Milk clinical cases last	14.37	17.46
Pre-stripping	13.62	14.09
Improve nutrition	13.45	14.44

Effect of Intervention on Clinical Mastitis Reduction (%)

Measure	Environmental	Contagious
Post milking teat dipping	36.51	37.15
Improve nutrition	17.00	16.48
Appropriate dry cow minerals	14.98	14.27
Prevent overcrowding	12.06	8.75
Blanket dry cow treatment	11.75	14.02
Clean stalls	11.57	5.55
Milk subclinical cases last	2.63	12.08

Conclusions

- There are no silver bullets.
- Daily conscious attention to the little things drive milk quality.
- Interventions that have the biggest impact:
 - Post-milking teat dipping
 - Milk high SCC cows last
 - Nutrition: including dry cow minerals
 - Cleanliness

Thank you!

