

Role of Cover Crops in Nutrient Cycling and Soil Health

Sustainable Agriculture Research & Education

Northeast SARE Pennsylvania State Coordinator Penn State Extension

extension.psu.edu

Overview

- Soil organic matter role in nutrient cycling
- Pools of soil organic matter
- Cover crop role in nutrient cycling
 - Nitrogen retention
 - Nitrogen supply
- Nitrogen contributions from soil organic matter

Soil Organic Matter (SOM) improves soil health by directly influencing other soil components

Healthy soil has structure and can support life

SOM Role in Nutrient Cycling

- Soil Particle Aggregation
 - Water Flow/Absorbance
 - Support Organisms
 - Root Growth
- Nutrients and Carbon Supply
- Chelates
- Cation Exchange Capacity
 - Clays = 50-150 meq/100 g
 - Humus ≥ 200 meq/100 g

Low SOM Poor Structure High SOM Good Structure

Soil animal photos from bio@biois.com

Scanning electron micrographs from www.micropedology.uni-bremen.de

Soil Organic Matter Pools

• Labile SOM - 5-20% of SOM

- Simple compounds
- Principal energy source
- Changes rapidly

• Stable SOM - 60-90% of SOM

- Stable structure, adsorbed to clay, protected in aggregates
- Changes slowly

Build Healthy Soil by diversifying SOM inputs

Soil Organic Matter and Cover Crops

Cover crops can add 1 to 5 tons organic matter/acre/yr Leads to significant increases in %OM over time

Plant certain types of cover crops based on your goals

<u>Grasses</u>

Annual ryegrass: nitrogen scavenger, erosion prevention, weed suppression

<u>Legumes</u>

Crimson clover: nitrogen source, erosion prevention

Photos: Edwin Remsberg

<u>Brassicas</u>

Forage radish: erosion prevention, weed suppression, soil compaction reduction

Legume Crops

- Fix and Supply Nitrogen
 - Root nodules
 - Plant available form
- Low C:N
 - ~3.5 to 4% N before flowering
 - ~3 to 3.5 % N after flowering
- Prior to N demanding crop
- Low biomass production
- Inoculate seeds

Brassica Crops (broadleaves)

Photo: Edwin Remsberg and USDA-SARE

- Deep taproots
 Biodrilling
- Radish and Canola respond to high N soils
- Scavenge N
 Produce less biomass
- Winterkilled or planted in early spring
 - \circ NO₃ leaching
 - Good in mixes

Cereal Crops/Grasses

- Fibrous Roots
- High C:N
 - ~ 2 to 3 % N before flowering
 - ~1.5 to 2.5 % N after flowering
- Nitrogen Retention

 Control NO₃ leaching
- A lot of above ground biomass
- Between Summer Annuals
 Corn Cover Soybean

Species Characteristics Affect N Retention

Cover crop species usually have a tradeoff between N supply and N retention

Cover crop biomass carbon:nitrogen ratio influences N supply

C:N ratio of cover crop residues regulates N supply vs. N tie up

Corn Yield Declined with Increasing C:N Ratio of Cover Crop

Across sites and cover crop treatments, N retention and supply were controlled by interrelated factors

Key Takeaways for Nitrogen Management with Cover Crop Mixtures

To prevent nitrate leaching:

- For every 3 ppm soil nitrate-N at cover crop planting, add 10 %pts to the seeding rate of winter-hardy grasses
- Fill in remaining seeding rate to 100% with legumes or other species of interest

Example 12 ppm nitrate-N = 40% winter-hardy grass seeding rate

To maintaining N supply to next crop:

- Non-legumes decrease N supply, but this can be offset by high soil organic matter
- To achieve high levels of both N retention and N supply, maintain low fall soil nitrate levels and/or increase SOM levels

Graphical Decision Support Tool: CC & SOM Credited N-Recommendation

- Developed a tool based on trials through PA
- Calculates:
 - N contribution from CCs and SOM based on site-specific measurements
 - Adjusted fertilizer recommendation to achieve yield potential
- Fall GDD at cover crop planting
- Spring GDD at cover crop termination

Soil Organic Matter (%)	
2.7	2.7
Fall Soil Nitrate-N (ppm)	
20	20
Fall Growing Degree Days (degree F, base 32)	
580 580	
Spring Growing Degree Days (degree F, base 32)	
1020	1

Calculating CC-credited N-rates

- 35 lbs N applied as manure
 - Determined from testing and availability factors
- 69 lbs N/ac minus 35 lbs manure-N = 34 lbs N/ac

22

Nitrogen Rate Comparisons

In Corn Silage (following Rye CC)

- 22 T/ac Yield Potential
 - Agronomy Guide 100 lbs N / ac
 - $_{\circ}~$ CC Tool 34 lbs N / ac
 - PSNT 83, 54, & 0 lbs N / ac

In Corn Grain

- 160 Bu/ac Yield Potential
 - CC Tool 0 lbs N / ac
 - PSNT 90 lbs N / ac
- All N applied as 30% UAN on July 6th

Evaluation

- To evaluate corn N sufficiency throughout the season:
 - Ear leaves were sampled at tasseling (VT) to determine N concentrations.
 - Late-season corn-stalk nitrate testing was conducted at ½ milkline stage.
 - Corn silage and grain yields were measured.
- Means comparisons using PROC Mixed
 - Treatment as fixed effect, Block as Random Effect

Corn Silage Results

Corn Silage Yield

Corn Silage Results

Corn Silage Results

Late Season Corn Stalk Nitrate

Corn Grain Results

Corn Grain Results

Ear Leaf-N Concentration at VT

Corn Grain Results

Conclusions

- CC Tool recommended N fertilizer rate was sufficient to meet the needs of a no-till corn silage and corn grain crops
- The CC Tool recommended N rate was lower than both the Agronomy Guide recommendation and the PSNT recommendation,
 - Highlights need/opportunity to credit the N contribution of cover crops and soil organic matter.

Summary

- SOM is important in improving both physical and biochemical aspects of nutrient cycling
- Cover crop management strategies depend on goals and should be tailored to site specific conditions
- N retention and supply determined largely by cover crop C:N, soil fall NO₃- supply, and SOM
- SOM and cover crop residue contributions need to be considered for effective nutrient management

Thank You Kristy Borrelli kab617@psu.edu

Thanks to: Charlie White and Anthony Colin

Funding provided by:

Northeast SARE Pennsylvania State Program

Cover Crop Innovations: A Training Program for Agricultural Service Providers

