Hemp Fertility Management

Dr. Heather Darby, Agronomist **University of Vermont**

Temperature, Water, Light

• Adapt to region – fairly cold tolerant.

• Tolerant of hot and arid conditions provided roots can reach water.

• Does not tolerate water logged soils.

Soil Limitations

Grows best on sandy loams.

• 40% or more clay not generally good.

• Adequate pH – over 6.0 (requires calcium).

• Nutrient loving especially N-P-K.

Root Ecology

CULTIVATING HEALTHY COMMUNITIES

• Long tap root (6 ft) if friable soil.

• Medium texture soil tap root 3 ft.

• High water table more lateral roots.

Fertility Requirements

Potassium (2.5 to 3.0%) 65 – 70 lbs per acre

Phosphorus (0.5 – 0.6%) 50 to 70 lbs per acre

Fertility Requirements

Nitrogen (5 to 6%)

100 to 200 lbs per acre

Applied early in growth

No response in rich soil Reduce THC??

Fig. 4. Phases of broccoli crop nitrogen (N) uptake rate (lb/acre per day) and cumulative N uptake in lb/acre (1 lb/acre = $1.1209 \text{ kg}\cdot\text{ha}^{-1}$) compared with broccoli biomass accumulation in ton/acre (1 ton/acre = $2.2417 \text{ mg}\cdot\text{ha}^{-1}$) (Sullivan et al., 1999).

	Soil Surface	Soil Properties	Crops
	0-6 inch	pH, P,K, OM, CI, S Ca, Mg, CEC, Zn, NH4*-N, Fe, Mn, Cu, soluble salts, NA	Alfalfa, clovers (analyze only 0-6 inch depth, nitrate analysis at deeper depths not necessary).
	6-24 inch	Soluble salts, NO ₃ -N, S, CI (in addition to 0-6 inch depth)	Wheat, barley, oats, durum, corn, soybean, dry bean, potato, canola, crambe, mustard, sunflower, grass hay, pasture, millet, canary seed, flax, safflower, buckwheat, lentil, field pea, sorghum, sudangrass. (Separate 0-24 inch depth into a 0-6 inch and 6-24 inch depth.)
Î	24-48 inch	NO ₃ -N, in addition to the 0-6 inch and 6-24 inch depths	Sugarbeet, malting barley. (Sunflower if greater than 30 lb N/acre are anticipated at the 24-48 inch depth.) (Separate cores into 0-6 inch, 6-24 inch and 24-48 inch depths.)

Figure 1. Depth recommended generally for soil analysis of certain properties and nitrate analysis for crops.

002-1	JZ4-J.	1.51
-------	--------	------

002-J2--0505 AII

VT County:

Franklin

Results

Nutrient	Low	Medium	Optimum High or Excessive	
Phosphorus (P):				
Potassium (K):	Page and the second			
Magnesium (Mg):				

Analysis	Value Found	Optimum Range or Average	Analysis	Value O Found	ptimum Range or Average
Soil pH (2:1, water)	6.4	n an	Copper (Cu)	0.3	0.5
Modified Morgan extracta	ble, ppm		Zinc (Zn)	0.5	10
Macronutrients			Sodium (Na)	. 14.0	20.0
Phosphorus (P)	2.0	4-10	Aluminum (Al)	47	
Potassium (K)	54	100-160	Soil Organic Matter %	5.3	
Calcium (Ca)	1664		Effective CEC, meq/100g	9.6	
Magnesium (Mg)	134	50-120	Base Saturation, %		
Sulfur (S)	8.0		Calcium Saturation	77.4	40-80
Micronutrients			Potassium Saturation	1.3	2.0-7.0
Iron (Fe)	13.5	7.0	Magnesium Saturation	10.4	10-30
Manganese (Mn)	4.9	14.0	-		
Boron (B)	0.3	0.3			

Recommendations for Pasture, Grass (< 30% legume) - Maintenance (2AM)

Limestone (Target pH of 6.2)	Nitrogen, N	Phosphate, P ₂ O ₅	Potash, K₂O
tons / Acre	lbs / Acre	lbs / Acre	lbs / Acre
0	50	60	80

Cation Exchange Capacity and Chelation

Soil Health is

PHYSICAL

CHEMICAL

Soil Health

BIOLOGICAL

There are three general "types" of organic matter in soils ✓ Living ✓ Dead ✓ Very Dead

Changing Forms of Soil Organic Matter

The Living

-Dead -

Recently dead soil organisms and crop residues provide the food (energy and nutrients) for soil organisms to live and function. Also called "active" or "particulate" organic matter.

The Living Eat the Dead

Living & Dead Organic Matter

Nutrient cycling in soil is highly dependent on an active and diverse community of microbes

Disease Suppression

nypocotyr and root dobaco (D),

Living and Dead Form Aggregates

Humus, partially broken down organic matter, plant roots, fungal threads, bacterials gels, and earth worm feces, form glues that hold soil particles together creating a good soil structure

AGGREGATED STATE

DISPERSED STATE

Macroaggregate

Foster et al, 1983

Environmental Health

b) soil crusts after aggregates break down

Microbe and Plant Health

Runoff from bare soil

Runoff from soil with vegetative cover

Resilancy

-Very Dead -

Well decomposed organic materials, also called humus. Humus contains very high amounts of negative charge.

Very Dead Organic Matter

Cation Exchange Capacity and Chelation

HEALTHY SOIL, PLANTS, FARM, COMMUNITY

Soil Nitrogen

- Organic Nitrogen (SOM)
 - slowly available to crops
 - microbes required
- Inorganic Nitrogen
 - rapidly available Plant Available Nitrogen
 - ammonium ion (NH_4^+) and nitrate (NO_3^-)

Mineralization

(Soil Temp. > 50 degrees F) Air, Moisture, Nice Home!

Immobilization

Manure Legume (Organic-N)

Plant available NH4+

(Soil Temp. > 50 degrees F) Air, Moisture, Nice Home!

Nitrification

Plant available NH4+

Soil Bacteria Plant available NO-3

Soil Temp. > 50 degrees F pH near 7 Air, Moisture, Nice Home! Produces H+ so reduce pH

Volatilization

Plant available NH4+ OH Gas NH₃ Soil & H2O Bacteria

Increase with high pH Increase with wet to rapid dry conditions

Denitrification

Plant available NH4+

(Soil Temp. > 50 degrees F) NO OXYGEN, Moisture

Nitrogen Supply - Organic Farms

- Backbone Building Soil Organic Matter
 - N-fixed through legumes
 - Animal manure/composts
 - Organic fertilizers

Organic Matter Is Not Created Equal

Nitrogen Credits for								
_A	Italta	Medium Texture	or Fine d Soils	Sandy	Soils			
		> 8 inches regrowth	< 8 inches regrowth	> 8 inches regrowth	< 8 inches regrowth			
Alfalfa S	tand Density		NITROG	EN CREDIT				
Good	>70%	190	150	140	100			
Fair	30-70%	160	120	110	70			
Poor	<30%	130	90	80	40			

Red Clover and Soybean Nitrogen Credits • Sod

70 lbs N/a maximum
80% of alfalfa credit

Cereal Cover crops
 – 0 - 90 lbs N/a

Fig. 2. Timing of nitrogen (N) mineralization from soil organic matter, cover crop residue, and organic fertilizer in relation to crop N uptake (from Gaskell et al., 2006).

Gaskell & Smith, 2007

Organic Fertilizers

Byproducts of Fish, Livestock, or Food

Table 1. Common organic nitrogen (N) fertilizer materials and their nutrient analysis.^z

Material	Nitrogen (% N)	Phosphorus (% P)	Potassium (% K)
Fish meal or powder	10-11	1.3	<1
Pelleted chicken manure	2-4	<1	<1
Processed liquid fish residues	4	<1	<1
Feather meal	12	0	0
Seabird and bat guano	9-12	<1-1.75	<1
Alfalfa meal (Medicago sativa)	4	<1	<1
Soybean meal (Glycine max)	7	<1	<1
Bone meal	2	<l< td=""><td>0</td></l<>	0
Kelp (order Laminariales)	<1	0	1.7
Chilean nitrate	16	0	0
Blood meal	12	0	0
Meat and bone meal	8	2.2	<1

^zGaskell et al., 2006.

Important Supplements

Table. 2. Mineralization rates of several typical organic fertilizer materials at two temperature regimes.^z

		Proportion of initial organic nitrogen mineralized (%)		
Product	Temp (°C) ^y	1 wk	4 wk	8 wk
Pelleted poultry manure	15	4	16	21
	25	10	23	36
Sea bird guano	15	49	57	60
2	25	45	48	54
Pelleted seabird guano	15	42	61	64
-	25	46	60	67
Fish powder	15	51	55	61
-	25	48	60	64
Feather meal	15	42	56	59
	25	50	64	63
Blood meal	15	41	60	64
	25	51	67	70

²Gaskell et al., 2006; Hartz and Johnstone, 2006. $y(1.8 \times {}^{\circ}C) + 32 = {}^{\circ}F.$

Gaskell & Smith, 2007

Fig. 4. Phases of broccoli crop nitrogen (N) uptake rate (lb/acre per day) and cumulative N uptake in lb/acre (1 lb/acre = $1.1209 \text{ kg}\cdot\text{ha}^{-1}$) compared with broccoli biomass accumulation in ton/acre (1 ton/acre = $2.2417 \text{ mg}\cdot\text{ha}^{-1}$) (Sullivan et al., 1999).

Organic Fertilizers

Amendment	Total C %	Total N %	C:N ratio
soybean meal	44.7	8.19	5.5
mustard meal	50.3	5.68	8.9
canola meal	48.7	5.57	8.7
pro-gro	23.1	5.07	4.6
kreher's	31.4	5.41	5.8
blood meal	51.3	15.2	3.4
giroux's	24.2	1.68	14.4
moo doo	37.0	2.01	18.4
chilean nitrate		16.0	

Feather meal, alfalfa meal, cheep cheep

C:N Ratio

14 dayChilean = 16 lbs N in 100 ProGro = 3.5 lbs N in 100 Blood = 3 lbs N in 100

14 dayGiroux's = 0.5 lbs N in 100 Kreher's = 1.62 lbs N in 100 Amount of each amendment needed to contribute 100 lbs of Plant Available N during the 70 days after incorporation (average of two soils)

	Soy Meal	ProGro	Dried	Poultry	Chilean
			Blood	Litter	Nitrate
70 day PAN (%)	0.529	0.518	0.532	0.234	0.841
Amt needed (dm	2348	3807	1241	25470	744
basis) †					
Amt needed (wet	2647	4138	1340	45645	744
basis) †					
ΡΑΝ [†]	100	100	100	100	100
Total N [†]	192	193	189	427	119
\$/lb N [‡]	\$2.87	\$7.80	\$6.95	<u>++</u>	\$3.50
\$/lb PA‡	\$5.75	\$15.0	\$13.0	††	\$4.46

Contact Information TRESPASSING heather.darby@uvm.edu

802-524-6501

DO NOT remove plants

Industrial Hemp NOT Marijuana NO THC

You are being photographed and will be prosecuted under Federal law.

