

A Baseline System for Forecasting Excessive Heat Events at Subseasonal Lead Times

Augustin Vintzileos

University of Maryland – ESSIC/CICS

Jon Gottschalck, Mike Halpert

This study was supported by NOAA grants: **NA15OAR4310081** and **NA14NES4320003**.

Outline:

- Definition of excessive heat events.
- Description of the monitoring system for heat events.
- The baseline forecasting system.
- Preliminary results from forecast verification.
- Multi-model approaches for improving the system.
- Summary and current/future work.

Heat kills: The example of the July 1995 Heat Event

DAILY WIND AND DEW POINT FIELDS for 8 p.m. EDT, July 11 – 15, 1995

Figure 4. Early evening surface winds and water vapor contents (in terms of dew points in "F) for 5 consecutive days in mid-July 1995 at locations throughout the eastern United States. The former are generally light in the Midwest and Northeast. Values of the latter in excess of 75°F (green shades) be considered unusually high.

> Corn for Grain 2010 Production by County for Selected States

From the NOAA study of the event (published December 1995)

USDA ·

A DEADLY HEAT WAVE JULY 12-15, 1995 LARGE UPPER

AIR RIDGE

Dew Points in Low 80s Heat Index to 125° 583 DEATHS IN CHICAGO ALONE

U.S. Department of Agriculture, National Agricultural Statistics Service

Bushels Not Estimated < 1.000,000 1,000,000 - 4,929,929 5,000,000 - 9,929,929 10,000,000 - 14,929,929 15,000,000 - 19,929,929 20,000,000 +

In comparison with other natural disasters, visualization of Heat Events is more complex:

Visualization from an extreme heat wave that occurred in India on May 2015

Visualizing quantitatively Heat Events is a necessary step before monitoring and forecasting...

Defining excessive heat events (I): Ingredients

Heat event impacts:

- Grow non-linearly as temperature and humidity increase: Requirement for using apparent temperatures (these are based on models of the physiological effects of heat on the human body). In this work we use NOAA's *Heat Index*.
- Increase as a function of their duration: Requirement for consecutive days with high apparent temperature.
- **Depend on geographical location:** Requirement for a definition of what is high apparent temperature as a function of location.
- Are a function of time due to acclimatization: Requirement for definition of what is high apparent temperature as function of timing within the warm season.

Defining excessive heat events (II)

Based on the above considerations we define heat events using percentiles of apparent temperature:

- A Heat Day is a day with Maximum Heat Index exceeding a given percentile α for the given geographical location and time-frame within the warm season.
- A Heat Event as a succession of at least two heat days. We define Heat Events at Level-1 (α=90%), Level-2 (α=95%), and Level-3 (α=98%).

Normal day	Heat day	Normal day	Normal day	Heat day	Heat day	Normal day	
No heat event				Heat e	vent		

Benefits from this definition: Addressing physiological effects of heat AND challenges of subseasonal ensemble forecasting. Easily extendable to Week-3&4 and Seasonal forecasts.

Inconveniences of this definition: Needs long historical records (and expensive reforecasts).

Monitoring weekly Heat Events

Heat Week:

- A week is defined as a Heat Week if it contains at least one Heat Event.
- We can define a start day of the heat event within this week.
- We can define a duration of the heat event within this week.

Monitoring system data source:

- GEFS Day-1 forecasts.
- NCAR/NCEP Reanalysis (comparison in backup slides)
- Working towards monitoring systems based on direct observations of temperature and humidity

Example (GEFS monitoring): The July 1995 Heat Event

- During the week of 11-17 July 1995 a Level-3 Heat Event (98% yellow) was covering an extended area from the Upper Midwest to the Northeast and Mid-Atlantic.
- This heat event progressed from west to east during this week.
- The event lasted 5 days (for Level-1 intensity) in the Chicago area.

Description of the July 1995 Heat Event

Forecasting excessive heat events (I): Baseline system

Probability of Occurrence of Heat Event

Baseline system: The NCEP GEFS (targeting Week-2)

- Initialized daily at 00Z, 06Z, 12Z and 18Z
- 20 perturbed forecasts per cycle resulting to 84-member ensemble per day
- For each ensemble member we compute whether Week-2 is a Heat Week, the starting day and the duration.
- Compute the statistics: Probability of occurrence, mean start day, mean duration (CDFs as a function of lead time from the reforecast).

Example of realtime forecast product: GEFS initialized on18 June 2015 for Week-2: 26 June to 2 July 2015.

Verification

Forecasting excessive heat events (II): July 1995

L1

L3

Verification

Caveat: prediction based on the 111ensemble members GEFS reforecast

Verification for the 1985-2014 period

Verification of GEFS 1985-2014: Receiver Operating Characteristic (ROC) and Area Under Curve (AUC)

Forecast=YES when Probability of occurrence > P

Contingency table	OBS Yes	OBS No	
Forecast Yes	а	b	
Forecast No	С	d	

ROC: POD vs. POFD for different values of P.

AUC provides a measure of the predictive capacity of the system.

.90-1 = excellent.80 - .90 = good.70-.80 = fair .60-.70 = poor.50-.60 = fail

Ways for improving the system:

(1) Investigating physical reasons for successes and drawbacks in forecasting specific heat events.

(2) Statistical post-processing (bias correction and calibration) of the probabilistic forecasts (bearing in mind that we are in the realm of rare events).

Example of calibration for L1 events

(3) Use multi-model ensemble forecasting approaches

Multi-model forecast skill: Area Under Curve (AUC) for 1995-2014

Reforecasts of L1 intensity events (1995-2014) initialized twice per week. Statistics for GEFS are computed from the 1985-2014 period. 11 + 11 ensemble members

ECMWF

Climate Prediction Center Public Interface:

Human forecasters will be using the model guidance to pinpoint areas of increased probability of occurrence of a heat event and its starting date

Summary

Objective: Develop a subseasonal excessive heat outlook system (SEHOS)

- We quantified heat waves using a definition that takes into account human physiology and the constraints of probabilistic subseasonal forecasting (Week-2 to Week-3&4).
- We developed monitoring systems for excessive heat events.
- We developed a baseline forecast system using the NCEP-GEFS and presented preliminary verification:
 - The system is capable of detecting heat events two weeks in advance (depending on the geographical area).
 - The model tend to miss heat events at higher intensity levels.
- We investigated multi-model approaches:
 - Combining the GEFS and ECMWF models provide better forecasts of heat events (better AUC).

Current/Future Work

 Daily experimental forecasts of Week-2 Heat Events with the 84-member ensemble GEFS will be run during summer 2016.

 These forecasts will be used by Climate Prediction Center forecasters for evaluation.

• In the near future we will be augmenting forecast capacity of the system by including predictions based on the ECMWF and CFS (NMME) forecast systems.

• We will extend the SEHOS to Week3@4 and to the global tropics and subtropics.

Support Slides

Forecasting excessive heat events (I): Baseline system

Probability of Occurrence of Heat

Baseline system: The NCEP GEFS.

- Initialized daily at 00Z, 06Z, 12Z and 18Z
- 20 perturbed forecasts per cycle resulting to 84-member ensemble per day
- For each ensemble member we compute whether Week-2 is a Heat Week, the starting day and the duration.
- Compute the statistics: Probability of occurrence, mean start day, mean duration (CDFs as a function of lead time)
- **Example of realtime forecast product:** GEFS initialized on18 June 2015 for Week-2: 26 June to 2 July 2015.

Verification

90

80

70

60

50 40

30

20

90 80

70

60

50 40

30

20

GEFS SEHOS Level-2: Init=2015-06-18 50N 40N 30N 120W 100W 80W

Climatological Heat Day for Week: 06/26 to 07/02 (Red line = 100F)

Heat Day at 98% for Week: 26 June - 02 July 50N 40N 30N 120 130 130 130 120 130 130 130 130 130 130 130 100 95 90

Monitoring excessive heat events (II)

Impacts of the July 1995 Heat Event to human mortality

Monitoring Heat Events: The July 1995 Heat Event

CDAS

vs.

GEFS DAY-1

Case study: Week-2 Probability of Occurrence of Heat Event (L1) for GEFS, ECMWF and Multi-Model

(equal weights)

GEFS

Multi-model

Verification

Week-2 Forecast and verification of L1 and L2 Heat Events with the GEFS in summer 2015

Towards Week 3&4 Forecasts

Beyond Week-2: ECMWF forecast of the July 1995 event (probability of L1 intensity) vs. Verification

⁸⁰ ⁶⁰ Days: 3-9 ⁴⁰ (weather ²⁰ forecast)

Days:

5-11

80

60

40

20

Verification L1/L2/L3

Week-2 forecast of probability of occurrence for L1, L2 and L3 Heat Events

GEFS

100W

80W

120W

In contrast to the GEFS the ECMWF forecasted L1 heat events in the Chicago area

Observations

However, forecasted probabilities of occurrence are generally lower for the ECMWF model and decrease rapidly as the intensity class increases

ECMWF

ROC Curves

