
consulting engineers and scientists

Extreme Weather Events and Transportation Infrastructure:

A Framework for Benefit-Cost Analysis

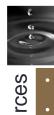
Samuel B. Merrill, Ph.D. Climate Prediction Applications Science Workshop, Burlington, VT March 24 2016

GEI Basics

- Founded in 1970
- 750+ Employees
- 37 Offices
- 35,000+ Projects in all 50 states and 25 countries

Technical Practice Areas

Environmental


- Compliance
- Permitting
- Due Diligence
- Characterization
- Remediation
- Risk Assessment
- Restoration
- Asbestos
- Demolition
- Brownfields
- In-Water & Uplands

Geotechnical

Coastal Engineering & Planning

- Foundations
- Excavation Support
- Construction
- Tunneling
- Dams
- Embankments
- Levees
- Failure Analysis
- Geotechnical
 Testing

- Conveyance
- Flood Control
- Water Management
- Water Supply and Storage
- Water Resources
 Support
- Hydropower

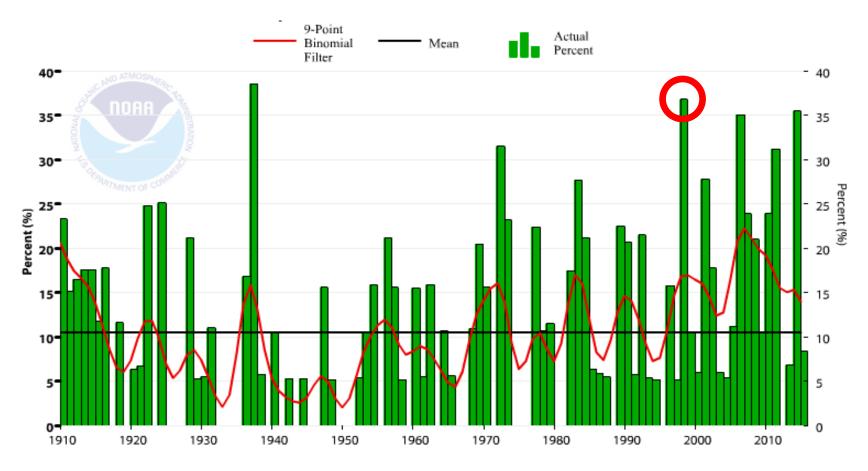
Ecological

- Ecotoxicology
- Monitoring
- Water Quality
- Aquatic Ecosystems
- Environmental
 Impact
- Laboratory Services
- Sensory Services
- Air Quality

Water Resources

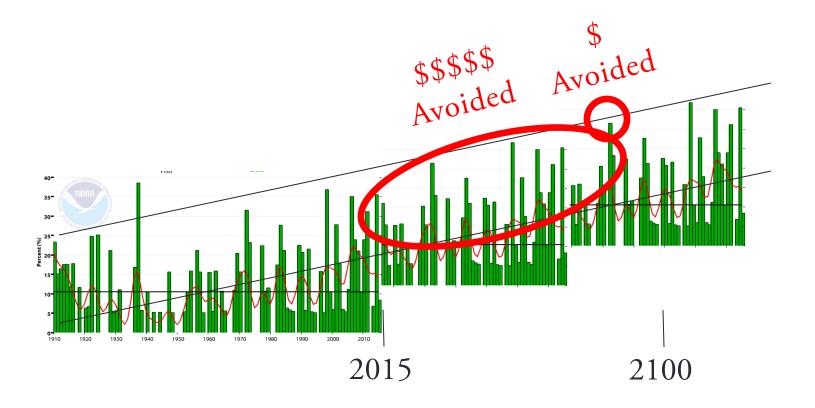
US Capitol Visitor Center, Washington DC

Goldman Sachs Building, NY

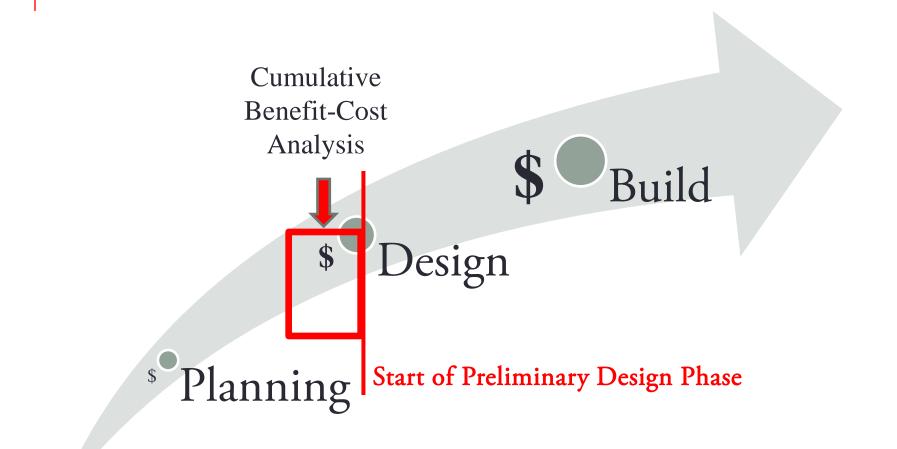


Brickell City Centre, Miami

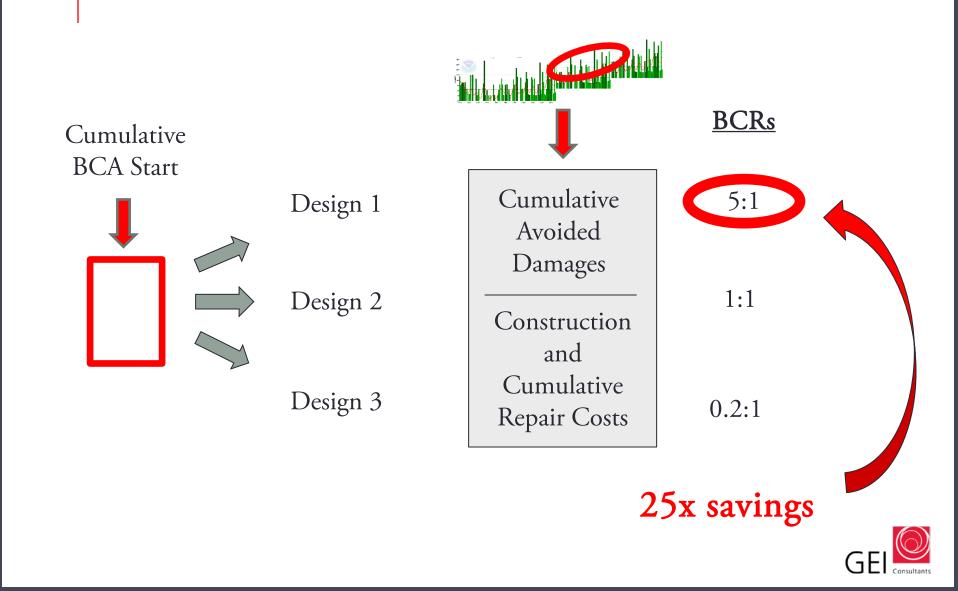
What storm do we currently consider in our design standards?



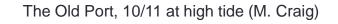
http://www.ncdc.noaa.gov/extremes/cei/graph/ne/4/01-12



A key measure of the value of any adaptation design investment is **cumulative avoided damage**



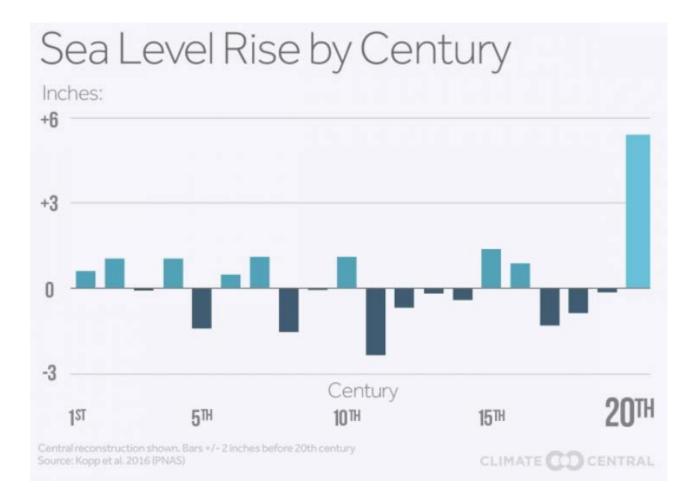
Engineering Project Timeline



Cumulative BCA Summary

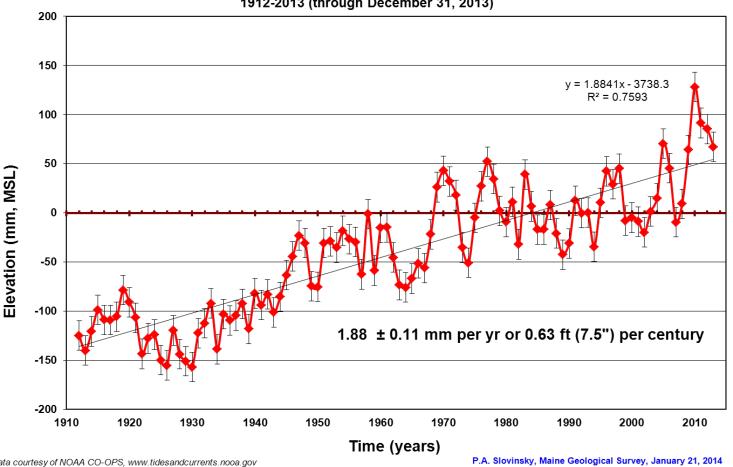
Methods to calculate cumulative avoided damages should:

• Track impact of events over an entire time period, not just as snapshots.



Methods to calculate cumulative avoided damages should:

- Track impact of events over an entire time period, not just as snapshots.
- Account for impacts of events with different intensities, frequencies, and rates of change.
 - and their interactions.


Rates of Sea Level Rise are Increasing

Rates of Sea Level Rise are Increasing

Over the past 100 years, sea level rise in Portland has generally followed globally averaged long-term trends

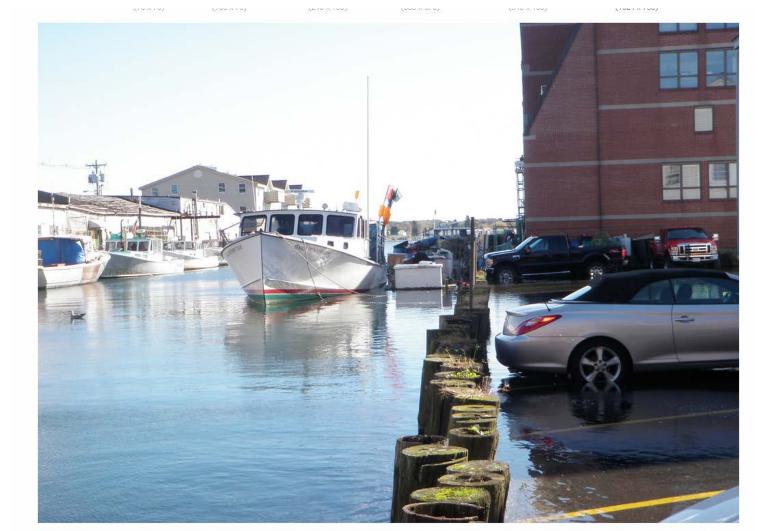
Sea Level, Portland, Maine 1912-2013 (through December 31, 2013)

Rates of Sea Level Rise are Increasing

Over the past 20 years, sea levels in Portland have risen far faster than the long-term trend. This change in rate is also being seen in global measurements.

y = 4.3739x - 8731.4 $R^2 = 0.4044$ Elevation (mm, MSL) -20 4.38 ± 1.21 mm per yr or 1.43 ft (17.2") per century -40 -60

Sea Level, Portland, Maine 1993-2013 (through December 2013)


Surge Events are Increasing

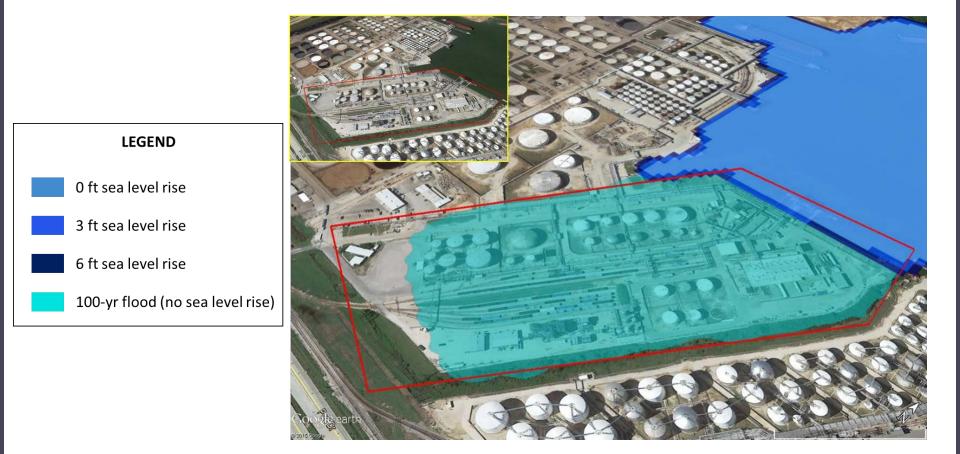
The Old Port, 3/10 at high tide (D. Yakovleff)

Surge Events are Increasing

The Old Port, 10/11 at high tide (M. Craig)

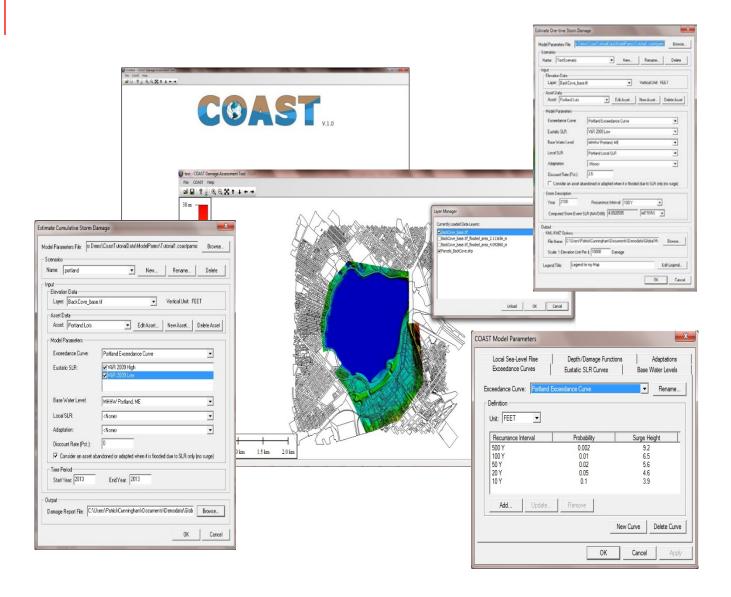
Surge Events are Increasing

East Bayside at High Tide 9/15 (Portland Press Herald 10/2/15)



Flood Frequency is Influenced by Sea Level

Scenario	Flood Stage (ft, MLLW)	# times inundated	% of high tides	Duration, hrs
Existing Flood	12.0	8	1.1%	8.6
+1 ft SLR	11.0	87	12.4%	121.8
+2 ft SLR	10.0	312	44.4%	575.3
+3.3 ft SLR	8.7	616	87.6%	1748.5
+6 ft SLR	6.0	702	99.9%	3816.3
based on 2013 Port				



Oil Refineries Will Face Increasing Vulnerability from Sea Level Rise and Storm Surge

COAST Software (Initially US EPA)

BCA for Infrastructure Upgrades

Muskie School of Public Service University of Southern Maine

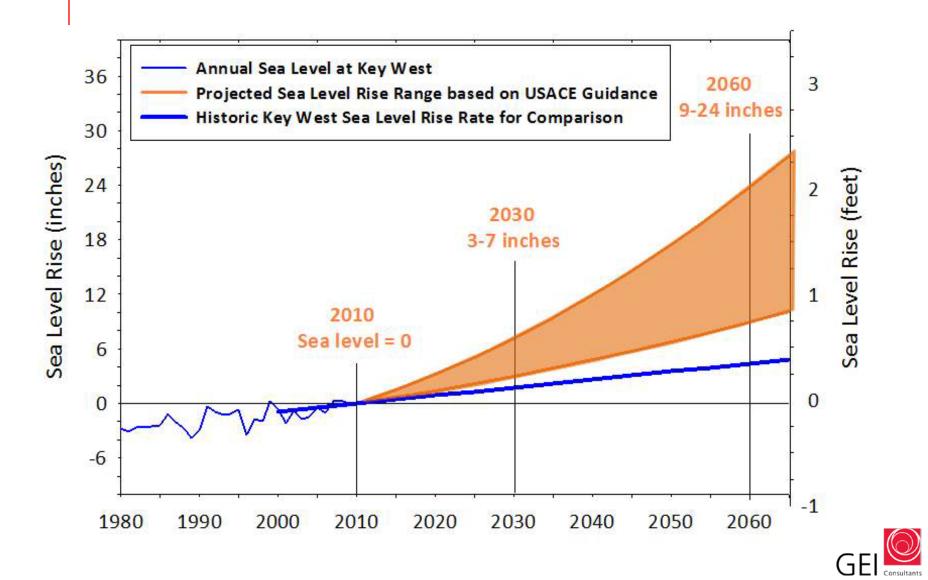
Climatic Change DOI 10.1007/s10584-011-0379-z

Simplified method for scenario-based risk assessment adaptation planning in the coastal zone

Paul Kirshen • Samuel Merrill • Peter Slovinsky • Norman Richardson

Received: 16 November 2009 / Accepted: 14 November 2011 © Springer Science+Business Media B.V. 2011

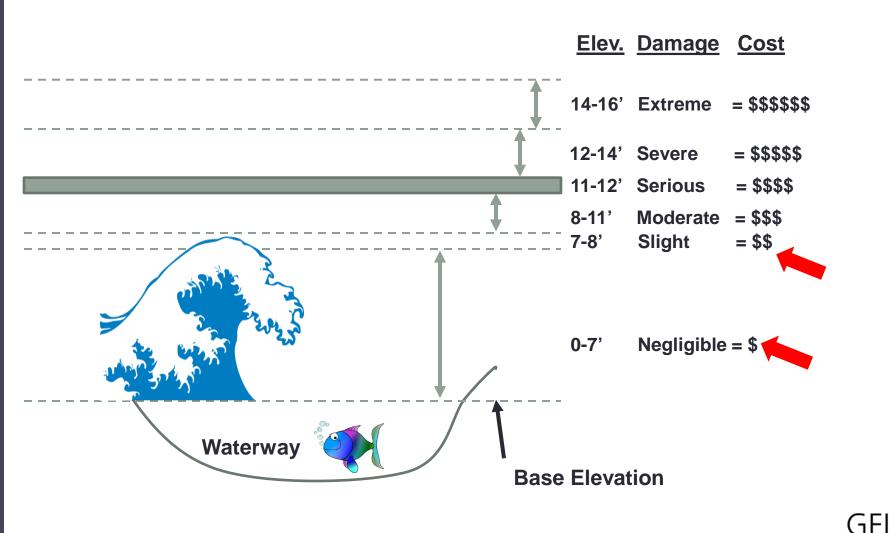
COAST is a means of


- Evaluating *cumulative* vulnerability to storm surge and/or sea level rise.
 - Tailored to specific engineered structures.
- Comparing costs and benefits of candidate adaptation actions or alternative designs.

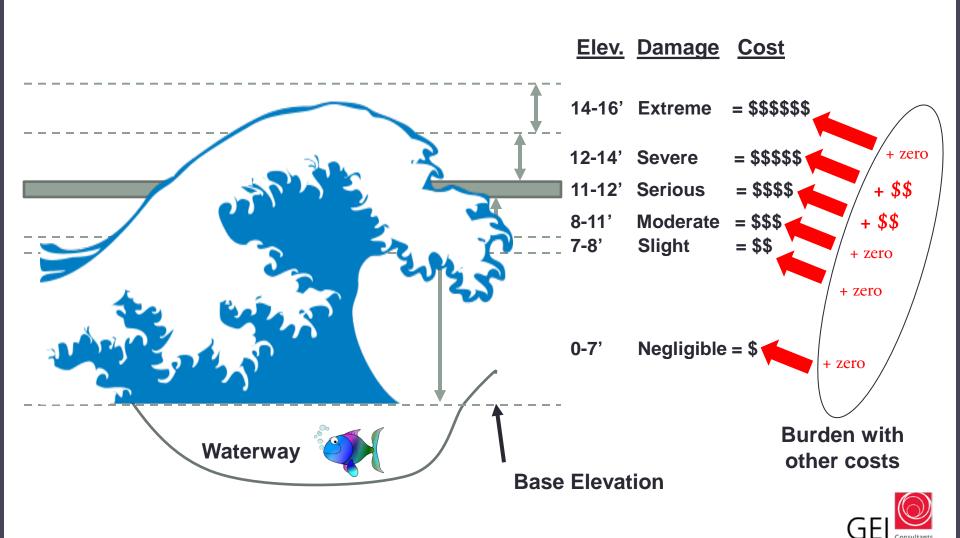
Selsey, United Kingdom Santos, Brazil Fort Lauderdale, Florida Key Largo, Florida Islamorada, Florida Kingston, New York Piermont, New York Catskill, New York Groton/Mystic, Connecticut Hampton, New Hampshire Seabrook, New Hampshire Hampton Falls, New Hampshire East Machias, Maine Falmouth, Maine Portland, Maine Bowdoinham, Maine Old Orchard Beach, Maine Scarborough, Maine Bath, Maine Farmington, Maine New Sharon, Maine Marshfield, Massachusetts Duluth, Minnesota Rochester, Minnesota

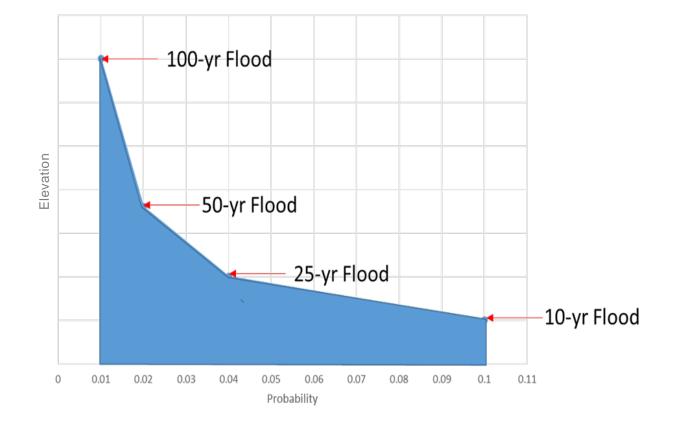
Input Sea Level Rise Curves

Input Flood Elevations and Recurrence Intervals

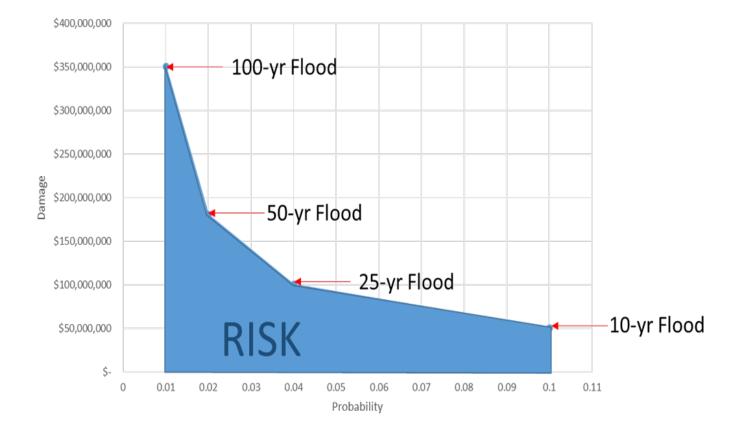

FEMA Map Service Center Mozilla Ele Edt Yew History Bookmarks Too FEMA Map Service Center - C C Https://msc fema.gov/webap/wcs/stor	tep tep res/servlet/FemaWelcomeView?storeId=100018c	atalogid=100018langid=-1			FLOO INSU STUD	RANCE		
Product Catalog Map Search Quick Or Product Search by	New to the FEMA Map Service			Table 8: Summar	FLORIDA	D COUNTY,		
Address Map Panel ID 1) Select a Product: Flood Maps 2) Eriter an Address: Street City	- General Information for all Product - General Information for Flood Insur - Homeowners Renters - Real Estate Flood Determination Ag - Insurance Agents - Engineets Surveyors - Federal Exempt Customers Preliminary Flood Hazard Data	Flooding Source and Transect ATLANTIC OCEAN (continued)	FIRM Panel	9 10-percent- annual-chance	Community Name BROWARD COUNTY (UNINCORPORATED AREA COCONUT CREEK, CITY OF COOPER CITY, CITY OF	RATED AREAS Community Number s) 125093 120031 120032		Broward County
State: Zip: Search by Street Address	FEMA is launching a new way to view preliminary flood hazard data - over th convenient location! Preliminary flood the public an early look at your home to flood hazards. Beginning in May 20	8	0567,0586		CORAL SPRINGS, CITY OF DANIA BEACH, CITY OF DAVIE, TOWN OF DEERFIELD BEACH, CITY OF	120033 120034 120035 125101	Community Name OAKLAND PARK, CITY OF PARKLAND, CITY OF	Community Number 120050 120051
Announcements	search tool to find your data. For more the Preliminary Flood Hazard Data we Try our new Live Chat service Our staff is available for online chat M Friday. 900 am to 5:00 pm Eastern St	9	0567,0586		FORT LAUDERDALE, CITY OF HALLANDALE BEACH, CITY OF HILLSBORO BEACH, TOWN O HOLLYWOOD, CITY OF LAUDERDALE-BY-THE-SEA, TOWN OF	F 125110	PEMBROKE PARK, TOWN OF PEMBROKE PINES, CITY OF PLANTATION, CITY OF POMPANO BEACH, CITY OF SEA RANCH LAKES, VILLAGE OF	120052 120053 120054 120055 120056
NFHL Data Freeze The Geographic Information System (GIS) services for the Map Service	(Eastern Daylight Time). Click below t Click below t Powered by nGenera	10	0559,0578	-	LAUDERDALE LAKES, CITY O LAUDERHILL, CITY OF LAZY LAKE, VILLAGE OF LIGHTHOUSE POINT, CITY OF	120044 120045 125125	SEMINOLE TRIBE OF FLORIDA SOUTHWEST RANCHES, TOWN OF SUNRISE, CITY OF TAMARAC, CITY OF	120685 120691 120328 120058
Center (MSC) and the Mapping Information Platform (MIP) sites is being enhanced and updated. In order to provide these updates, the MSC will undergo several changes	Live shat by n0enera What are you looking for? - Flood Maps - FIRMettes	11	0559,0578	-	MARGATE, CITY OF MIRAMAR, CITY OF NORTH LAUDERDALE, CITY C	120047 120048 DF 120049	WEST PARK, CITY OF WESTON, CITY OF WILTON MANORS, CITY OF	120222 120878 125158
and outlages in the coming months. National Flood Hazard Layer (NFHL) data freeze – NFHL data will freeze beginning April 24, 2013 and will end	- DFIRM Databases - MapViewer - Web - Documents, Publications & Forms	12	0559,0578		Fed	REVIS August 18		ency
		13	0557,0576			FLOOD INSURANCE S 12011CV0		

¹ Rounded to the nearest foot and may include effects of wave action. Base Flood Elevations shown on map may

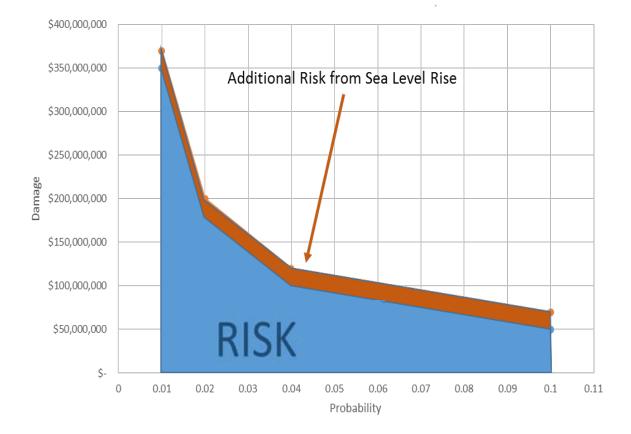

Can also use finer resolution data from ADCIRC and other models.


Depth Damage Functions Designed for Each Candidate Action/Structure

Depth Damage Functions Designed for Each Candidate Action/Structure

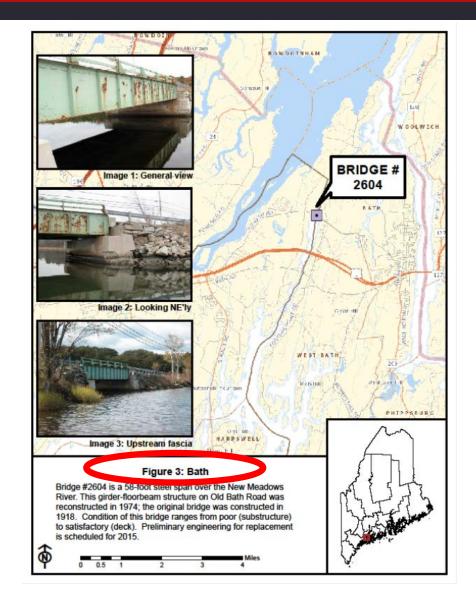


Exceedance Curves



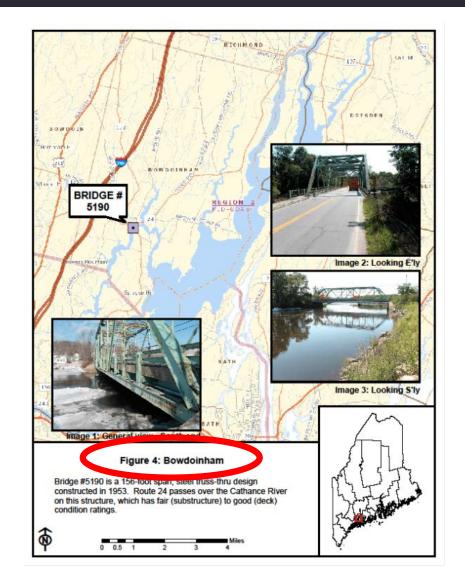
How Vulnerable Are We If We Do Nothing?

How Vulnerable Are We If We Do Nothing?



Bridge Sensitivity to Elevated Water Levels

View of a bridge over the Sandy River on ME-41 in Farmington, an example of the types of structures that have been evaluated with the COAST software.



<u>Bath</u>				
	Low Sea Level Rise (3.3')			
	Initial Construction Costs	Total Damage/Repair Costs by 2100	TOTAL LIFE CYCLE COST BY 2100	
Replace in Kind	\$400,000	\$697,476	\$1,097,476	
Replace with 3.3' SLR design	\$594,000	\$697,476	\$1,291,476	
Replace with 6' SLR design	\$1,000,000	\$281,242	\$1,281,242	
	High Sea Level Rise (6')			
	Initial Construction Costs	Total Damage/Rep Costs by 2100	oair TOTAL LIFE CYCLE COST BY 2100	
Replace in Kind	\$400,000	\$1,867,580	\$2,267,580	
Replace with 3.3' SLR design	\$594,000	\$1,867,580	\$2,461,580	
Replace with 6' SLR design	\$1,000,000	\$916,598	\$1,916,598	

Replace in Kind was the most cost effective choice for a Low sea level rise scenario, but **Replace with 6' SLR design** was the most cost effective choice for a High sea level rise scenario

<u>Bowdoinham</u>			
	Low Sea Level Rise (3.3')		
	Initial Construction Costs	Total Damage/Repair Costs by 2100	TOTAL LIFE CYCLE COST BY 2100
Replace in Kind	\$250,000	\$1,656,830	\$1,906,830
Replace with 3.3' SLR design	\$394,000	\$1,162,080	\$1,556,080
Replace with 6' SLR design	\$491,000	\$205,159	\$696,159
	High Sea Level Rise (6')		
	Initial Construction Costs	Total Damage/Re Costs by 2100	pair TOTAL LIFE CYCLE COST BY 2100
Replace in Kind	\$250,000	\$2,163,283	\$2,413,283
Replace with 3.3' SLR design	\$394,000	\$1,900,813	\$2,294,813
Replace with 6' SLR design	\$491,000	\$908,565	\$1,399,565

Replace with 6' SLR design was the most cost effective choice for both Low and High sea level rise scenarios.

Summary

• In terms of fiscal efficiency, there is no one right answer to the question "what design standard should we use?" Site-specific analysis is required.

Economic analyses of sea-level rise adaptation strategies in transportation considering spatial autocorrelation

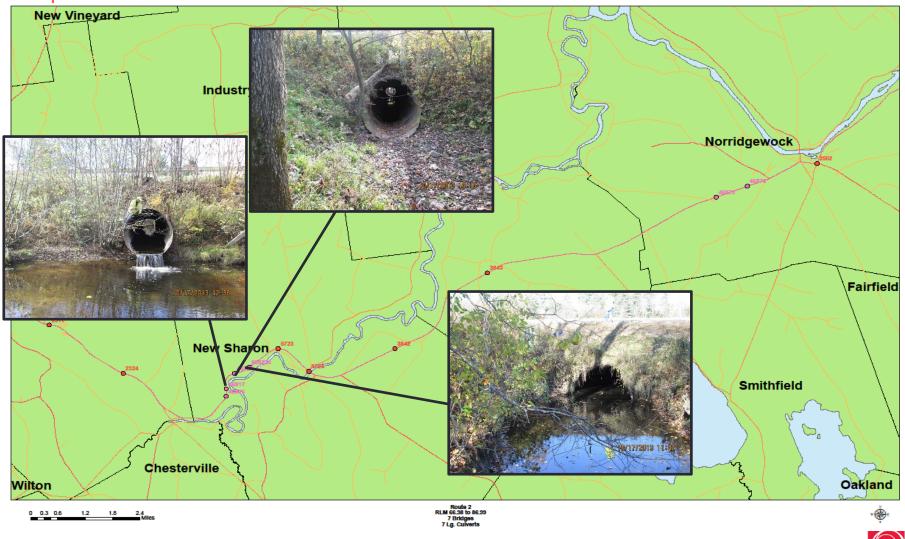
Qing-Chang Lu^{a,*}, Zhong-Ren Peng^{a,b}, Liye Zhang^c, Zhanyong Wang^a

"...The construction costs of seawall and road elevation are different for different states or situations, so the economic analysis should be conducted based on the actual construction plan in proposed locations."

But many futures are possible!

 How do we pick whether to build for a low or a high sea level rise scenario??

<u>Bath</u>				
	Low Sea Level Rise (3.3')			
		Total		
	Damage/Repair			
	Initial Construction	Costs	TOTAL LIFE CYCLE COST	
	Costs	by 2100	BY 2100	
Replace in Kind	\$400,000	\$697,476	\$1,097,476	
Replace with 3.3' SLR design	\$594,000	\$697,476	\$1,291,476	
Replace with 6' SLR design	\$1,000,000	\$281,242	\$1,281,242	
		High Sea Level Rise	<u>(6')</u>	
		Total Damage/Repai	r TOTAL LIFE CYCLE	
	Initial Construction	Costs	COST	
	Costs	by 2100	BY 2100	
Replace in Kind	\$400,000	\$1,867,580	\$2,267,580	
Replace with 3.3' SLR design	\$594,000	\$1,867,580	\$2,461,580	
Replace with 6' SLR design	\$1,000,000	\$916,598	\$1,916,598	



But many futures are possible!

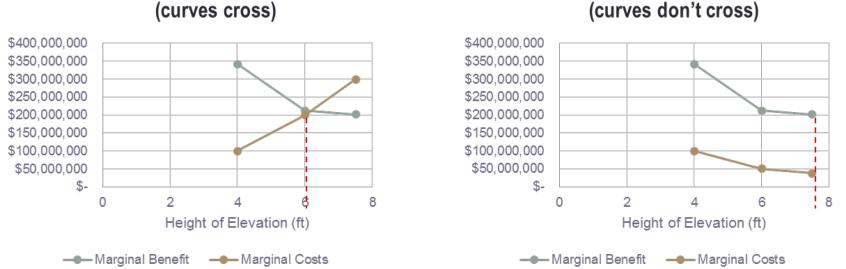
- How do we pick whether to build for a low or a high sea level rise scenario??
- Still needed is a means of selecting from candidate designs in a way that minimizes risk across modeled future scenarios.

Transferable Example – Going Inland

GEL

Transferable Example – Going Inland

New Sharon_989720



Cumulative Burdened Life-cycle Costs

How High Should Road or Other Elevations Be?

Marginal Costs and Benefits of Elevation Height

Marginal Costs and Benefits of Elevation Height (curves cross)

- When curves cross, appropriate height is at the curve intersection.
- When curves don't cross, appropriate height is at the best ratio between them.
- If choosing to build to a standard other than ideal, you at least have an estimate of how efficient the investment will be.

Thank You!

Sam Merrill: 207-615-7523 smerrill@geiconsultants.com www.geiconsultants.com

