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Climate Change and Infrastructure Design
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Downscaling (ESD) from Climate Model Output to a Weather 
Scenario
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• Consider only one climate variable (not a weather generator)

• Assume temporal pattern  trend, seasonal (annual) cycles, short term dependence

• Method based on quantile-(quantile) matching  
(or pattern matching, or distribution translation)

• Known as Probabilistic Downscaling orEmpirical Statistical Downscaling (ESD): 
The probability distribution (CDF) of climate is shifted/translated to that of local weather 
But: No attempt at trying to match actual weather:  Asynchronicity
(See Benestad et al. 2013)

• Develop method for Uncertainty Quantification: 
Confidence Intervals for Infrastructure “Endpoint”

• Uncertainty due to Downscaling only.  Assume all climate model information as given.



ESD of a Temporally Patterned Climate Variable 
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XC current model output time series (or historic / baseline) 

YC      current weather time series

XP projected (future) model output  
YP projected weather scenario;  unknown

• Assume temporal pattern  (eg daily temperature) 
has trend, seasonal (annual) cycles, short term dependence



ESD: Marginal Distribution Translation via q-q matching
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• Matching Quantiles:   
x* ~ FX(x)  and y* ~ FY(y) if 𝐹𝑌 𝑦∗ = 𝐹𝑋 𝑥∗ F( ) ; cdf

then:       𝑦∗ = 𝑇 𝑥∗ = 𝐹𝑌
−1 𝐹𝑋 𝑥∗ (1)        

(Panovsky and Brier, 1958)

• Downscaling:  (1) Match empirical quantiles of XC and YC

(2) Fit a curve or interpolate plus interpolation(*)

Note: - this permutes the series:  asynchronicity

- corrupts temporal dependence

(2) Then use values of XP to predict yP = T(xP)

• Corruption of temporal structure more serious than suboptimal choice of interpolation
Empirical quantiles of the marginal distribution are not representative of the F( ) for a 
structured time series

(*) Variations: linear regression , piecewise linear, spline regression, kernel convolution, analog method…
Stoner et al.  2012, McGinnis et al. Michelangeli et al. Dixon et al. 2016

(*) Delta method is a special case 



• Empirical quantiles of the marginal distribution are not 
representative of the F( ) for a structured time series
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Two Series:  Same (marginal) mean and standard deviation   (left: random,  right: AR(2)



Detour: Two possible ways to predict future scenario
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1 Model to Station Translation (MST):  (this one is used more often)
Match quantiles of Xc and Yc, then apply the translation to future Xp. 
So-called “stationarity” assumption: Translation remains valid when going from 
present to future.  

2 Current to Future Translation (CFT): Match the quantiles of Xc and Xp (clim. model 
output) then apply the translation to Yc (station weather). 
Here “stationarity”; translation (from current to future) is valid when going from 
model output to station data.  Better term would be: “(model-to-station) consistency”

Note:   - CDFt (Michelangeli et al.,2009) and xCDFt (Kallache et al. 2011) is based on CFT
- only very specialized situations give same result for MST and CFT

(XC , YC )  current (or historic / baseline)    (model output, weather) 
XP projected (future) model output  
YP projected weather;     (unknown)

We will only discuss MST



• q-q matching DS for scale-location marginal distribution (eg normal, t, Gumbel):

𝑦∗ = 𝑇 𝑥∗ = 𝜇𝑌 + 𝜎𝑌𝛷𝑌
−1 𝛷𝑋

𝑥∗−𝜇𝑋

𝜎𝑋
= 𝜇𝑌 + 𝜎𝑌

𝑥∗−𝜇𝑋

𝜎𝑋
;    F is stand. cdf

• MV cdf distr. of time series: xC =(xC,1,xC,2,….,xC,T) :  FXC(xC)   etc.

• Correct downscaling: 𝒚𝑝 = 𝝁𝑌𝑐 + Σ𝑌𝑐
1/2

𝛷𝑌𝑐
−1 𝛷𝑋𝑐 Σ𝑋𝑐

−1/2
𝒙𝑝 − 𝝁𝑋𝑐 , (2)

where m is the fitted mean (series), and S is the variance covariance matrix

Multivariate (MV) Distribution for Structured Time Series
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Downscaling (ESD) and Time Series Modeling
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• TS model fitting: 
Trend:  cubic spline with 3 knots (defines mean)
Seasonal cycles: cubic spline with 8 knots (defines mean)
Time dependence:  ARMA Model autoreg. order p=3  (AR(3)) (def cov)      + ~   8%

Noise (error) distribution: Not specified for DS

• Noise variable: independent realizations:  DS via QQ matching possible

• Equation again:    𝒚𝑝= 𝝁𝑌𝑐 + Σ𝑌𝑐
1/2

𝛷𝑌𝑐
−1 𝛷𝑋𝑐 Σ𝑋𝑐

−1/2
𝒙𝑝 − 𝝁𝑋𝑐

1:  Standardized residual operation: mean subtraction and “whitening’; Model for XC

applied to xP

2:  Downscale standardized residuals using empirical q-q matching of e_XC and e_YC

3:  “Coloring” and mean structure adding; Model of YC

3 2 1

R2 ~ 85%



Whitening and Coloring
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• AR and ARMA time series:   Whitening (removing the dependence structure) requires 
filtering (i.e. a sequential calculation)

• Coloring (adding dependence structure) requires inverse filtering (TS simulation)

• Noise variable: independent realizations:  DS via QQ matching possible

• Available in software (eg. R)

• Steps:

a)  Whitening with model for XC;   
1.  Subtract the mean structure 𝝁𝑋𝑐 of XC (lin. Regression residuals)
2.  Whiten the ARMA model for the regression residuals of 1.

b) Coloring a standardized residual with model for YC

1.  Simulate the ARMA model using the given residuals as noise (innovation)
2.  Add the mean structure 𝝁𝑌𝑐to the result of 1. 



Uncertainty Quantification via Bootstrapping
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• Linear Standard Error approximations not feasible 

• Use Bootstrap (resampling/simulation) based calculations for standard error 
and confidence intervals.

• Bootstrapping time series:  nonparametrically using block resampling 
(difficult to implement with annual cycles)

• For simple AR models (no trend,cycles):  Can resample residuals (Efron, Politis
et al ..)

• Best for us:  Parametrically sample from limiting normal distribution (*) of 
fitted parameters, then simulate series with randomly permuted residuals. 
(A hybrid parametric/nonparametric bootstrap)

(*)Limiting normal distributions are correct for the long daily series of 30 – 50 yrs



Freeze-Thaw Cycle: Winter Weight Premium - Spring Load Restriction
(see Jacobs et al.)
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FI, CFI = daily & cumulative freezing index

TI, CTI = daily & cumulative thawing index

Tavg,i = average air temperature

Tref = reference temperature 
(often taken as 32 oF, but may vary)

MnDOT (2009):  • Apply WWP When CFI > 280oF days

• Apply SLR When CTI > 25oF days

Simplified 
Freeze-Thaw 
Model that only 
depends on 
average daily 
temperature

A Prototype Freeze-Thaw Model that only depends on daily temperature



Some Results (using CCSM4)

13

Using simple q-q 
matching method

Temperature 
Annual Means
Station DS



Summary
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• We have applied time series modeling and analysis to empirical statistical 
downscaling (ESD) for studies where temporal (short term) structure is 
important and needs to be translated correctly from climate model to local 
weather scenarios.

• This enables the coupling of process models for infrastructure design (eg
bridges, pavements, road maintenance, etc.) with climate model outputs.  

• Either GCM’s (global climate models) or RCM’s can be used in this 
framework.

• We applied a hybrid Bootstrap for standard error and confidence interval 
calculations.  It allows to correctly propagate statistical uncertainty 
measures through the downscaling calculations and additional process model 
steps.

• The bootstrapping limits the use of very computationally intensive coupled 
process models somewhat.



Next steps

15

• Multiple climate model outputs:  Downscale first, then combine estimates.   

• Could the framework be extended to multiple climate variables - combine a 
weather generator model with this ESD model, which then can be coupled to 
infrastructure design (or impact) models.

• More realistic impact process model:  add its uncertainty.  How?  (model 
calibration, unified statistical framework, Bayesian meta analysis…)

Thanks !

Ernst Linder

Dept. of Math. & Statistics

U. of New Hampshire

elinder@unh.edu


