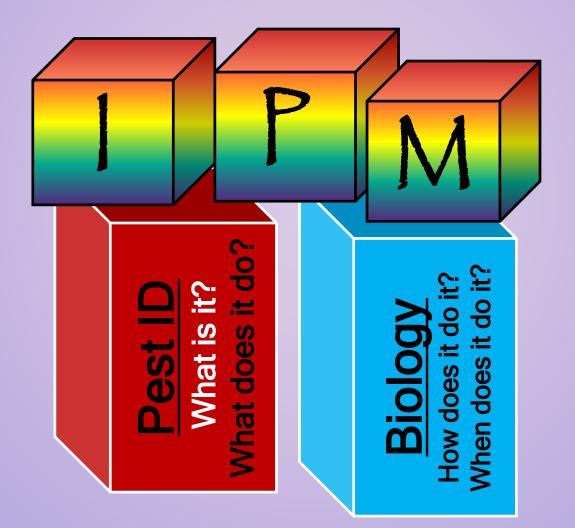

Insect and Disease Updates August 5, 2020

What's Eating You?

The Insects in your Vegetables August 5, 2020

Knowing the <u>Good</u> from the <u>Bad</u> and everything in between

Margaret Skinner, UVM Extension Entomologist 802-656-5440


mskinner@uvm.edu

www.uvm.edu/~entlab/

The Corner Stones

Parasitic Wasps

Potato Aphid

Green Peach Aphid

Foxglove Aphid

Aphidius ervi

Bacterial symbionts... OH NO!

Aphidius colmani

http://www.uvm.edu/~entlab/High%20Tunnel%20IPM/Presentations/ TomatoHighTunnelPests&NatEn-Dec2016Final.pdf

What would <u>YOU</u> do?

Aphid Biocontrols

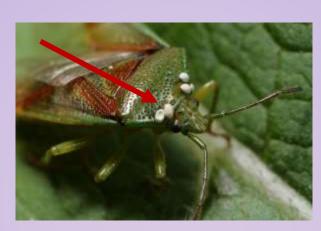
Aphidoletes (midge)

Syrphid Flies (Hover Flies)

Coccinellidae (lady beetles)

Aphid mummies (parasitized)

More about Parasitic Wasps


Cotesia congregata

Also attack Fall armyworm Cabbage looper

There's always BT, Bacillus thuringiensis var. Kurstaki.

Parasitic Flies

Stink Bugs! The Good, The Bad and the Ugly

Brown marmorated stink bug

Halyomorpha halys

Consperse stink bug

Euschistus conspersus

Brown stink bug

Euschistus servus

Green stink bug

Chinavia halaris

Spined soldier bug

Podisus maculiventris

Podisus brevispinus

Spined soldier bug

Squash Bugs, UGH!

Anasa tristis

Anasa repitita

Western conifer seed bug

Leptoglossus occidentalis

Squash Bug

Damage: Piercing & Sucking

- Feed on stems at the base of the plant, disrupting sap and nutrient flow.
- Produce wounds that serve as disease entry points.
- Inject toxin into plant tissue turning it black.
- Feed on unripe fruit disfiguring or killing it.

Squash Bug Biology Gradual Metamorphosis Cucurbit Hosts

Squash (esp. Hubbard, butternut and marrow), pumpkin, cucumber, melon

A female lays up to 800 eggs on preferred hosts (pumpkin)

Nymphal phase lasts 4-6 weeks

Adults live 75-130 days

1 generation/yr though present throughout growing season

Feeding continues until frost

Squash Bug Management

Damage threshold: One egg mass per plant

- Remove and DESTROY debris during growing season and in the fall to remove overwintering sites
- Cover young plants with floating row covers
- Routine inspection to detect pest early
- Plant resistant varieties (butternut, acorn)
- Keep plants healthy, watered and fertilized
- Hand pick and destroy eggs and adults
- Trap bugs under boards and newspaper and collect
- Apply chemical insecticides

Tarnished Plant Bug (Lygus lineolaris)

Peristenus digoneutis

Four-lined Plant bug (Poecilocampus lineatus)

Overwinter as adults at field edges

Overwinter as eggs in host plants

Keys to success: Weed management & Sanitation

Integrated Pest Management Worksheet				
Date:	Crop:			
Damage (Whe	en, Where, What type):			
Pest Identifica	ation:			
Common Nan	ne:			
Pest Life Cycl	le:			
How many ge	nerations/year?			
How many eg	gs laid/female?			
How long to c	complete one generation?			
What are the i	ideal conditions?			
Other key info	ormation on the biology:			
Recommende	d Management:			
Threshold for	Action:			
Cultural Conti	rol			
Biological Co	ntrol:			
Natural Enem	ies (naturally occurring or commercially available:			
Chemical Con	ntrol:			
Future Preven	ition:			

The IPM **Process** Steps towards developing a plan of ATTACK

Management St	rategy Record
---------------	---------------

Date:	Crop:	Pest:	
Scouting Me	thods Used:		
Results of Sc	couting:		
1 <u>0</u>	1		
Natural Ener	nies Present? 🛛 Yes 🖾	No 🗳 Don't know	
Action Three	shold Reached? □Yes □	No □ Don't have one	
Action Take	n:		
Biological C			
Chemical Co	ontrol:		
Future Preve	ntion:		
Other Notes:			

Keeping **Track of** your **Success** Why reinvent the wheel?

Vegetable Disease Webinar

Ann Hazelrigg UVM Plant Diagnostic Clinic August 5, 2020

ann.hazelrigg@uvm.edu

The University of Vermont

Cracking-rapid water uptake

Ripening disorders-yellow shoulder, blotchy ripening, white internal tissue, gray wall-associated with k to fruit and high temps. Blossom drop over 90F

Poor pollination- Temps over 90 with high RH- sticky pollen, bees may not work, more male blossoms than female produced, bitter fruit

Gold Flecking

- Rule out mites/thrips
- High daytime (>88°F) and nighttime (>68°F) temperatures combined with high humidity (dew point temperatures >68°F)
- Some cultivars more prone than others

Blossom end rot-localized Ca deficiency due to moisture fluctuation

BER on Pepper

Anthracnose-

• growth rapid above 80F

Tomato leaf mold-high RH

Powdery mildew-high RH, host specific, will not overwinter, JMS stylet oil/Microthiol Disperss Sulfur alternated

Mg Deficiency

Septoria/Alternaria leafspot

Celery Anthracnose-curling/twisting foliage, scarring on petioles, heart rotting. Warm wet conditions. Seedborne.

Gummy stem blight cucurbits-seed,crop debris

Fruit rot phase

Downy mildew cucurbits

UVM Plant Diagnostic Clinic https://www.uvm.edu/extension/pdc ann.hazelrigg@uvm.edu

Thank You!

This presentation was supported by the University of Vermont Extension System and the USDA Extension IPM Program. Any opinions, findings, conclusions, or recommendations expressed herein are those of the author and do not necessarily reflect the view of the US Dept. of Agriculture. This presentation was given in the furtherance of Cooperative Extension work, Acts of May 8 and June 30, 2014, in cooperation with the US Dept. of Agriculture. Univ. of VT Extension and the USDA offer educational and employment to everyone without regard to race, color, national origin, gender, religion, age, disability, political believes, sexual orientation, marital or familial status. Mention of any commercial products is not meant to be an endorsement.