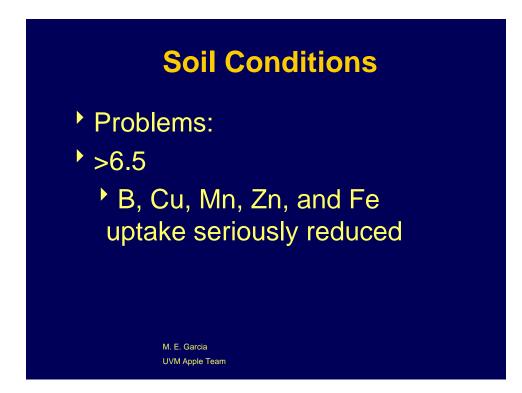
Back to Basics Horticultural Practices

M. Elena Garcia and the Apple Team

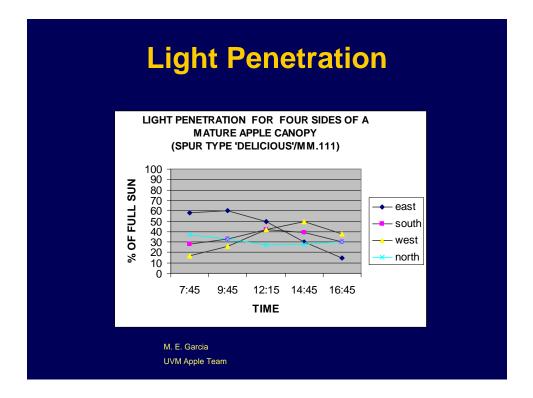
The University of Vermont

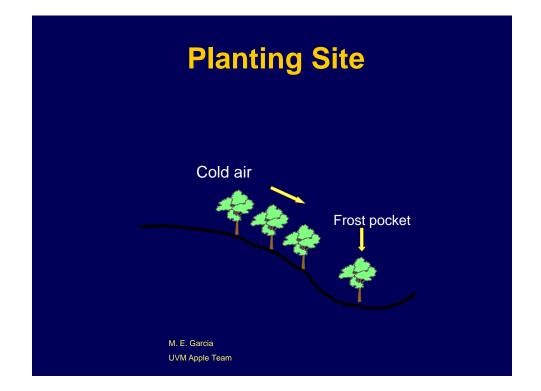
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

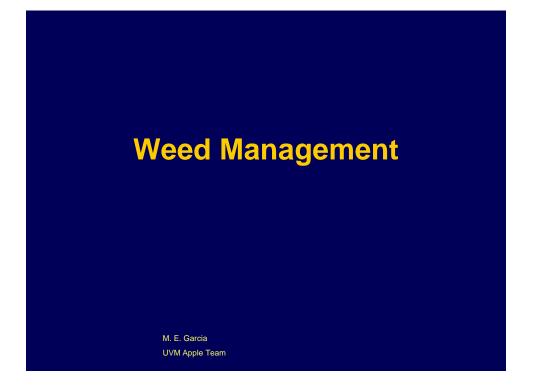


Strongly Acid	Medium Acid	Slightly Acid	Very Slightly Acid	Very Slightly Alkaline	Slightly Alkaline	Medium Alkaline	Strongly Alkal	ine
			NUA-	ogen				

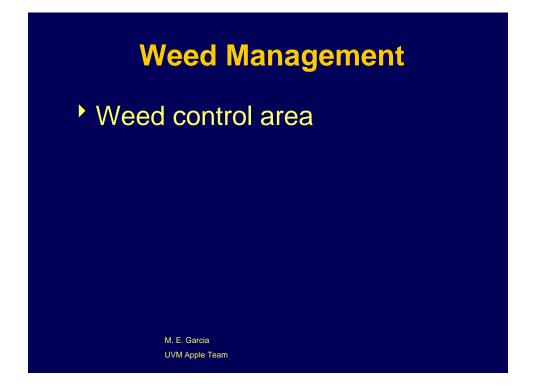
	din avanan	Biomano		phorus		MAGNINSS		
		100000000		I. ssium	NORMARKS	Personality		***********
					08068000	708011000008		KOURSA
		1500001110 0		lfur Transfer		L.		0//////////////////////////////////////
		20000000000000000000000000000000000000			Calcium	1		
					agnesiu			
	iron	a d <i>hanalalan</i> a			No.	Participants		
Mallon and a subscription of the subscription	Mangane	se			000000000			
	Boron							
	Boron						Second Second	
C	opper and	Zinc	-	n Addisia Goordata	1000000000			
				M	olybder	านกา		<u>1990-1999</u>
						ł		
4.0 4.5 5.0	5.5	6.0	6.5	7.0	7.5 8	3.0 8	.5 9.0 9.	5 1

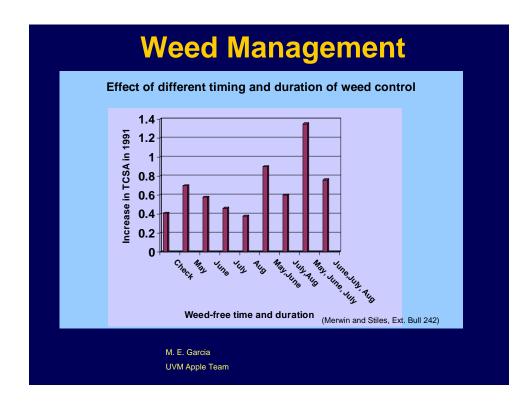


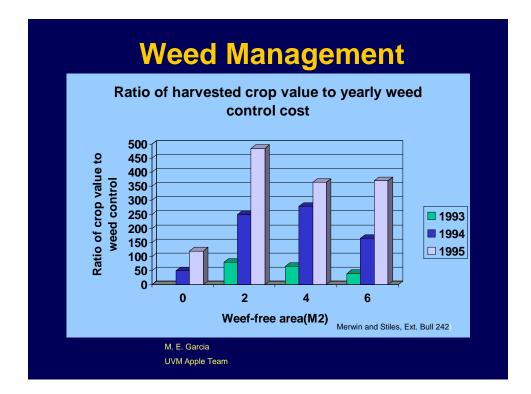




Light Penetration								
% of full I	radiation needed	I for various quality						
factors in apples								
Character	Unsatisfactory development							
Fruit size	>50%	<50%						
Red color	>70%	<40%						
Spur develo	pment >30%	<25%						
	M. E. Garcia UVM Apple Team							




Weed Management


- ▶ IPM
- Pre-plant eradication and exclusion
 - Herbicides
 - Pre-plant cover crops
 - Selection of rootstocks

Wee	Weed Management								
the orchard in rel	Total shoot growth of apple trees during first year in the orchard in relation to % of weed control within a 6 foot wide row strip (Merwin and Stiles, Ext. Bull 242)								
Weed-free	Shoot growth	Growth							
area (%)	per tree (ft)	reduction (%)							
100	9.28	0							
75	8.40	10							
50	7.40	20							
25	6.63	29							
0	5.77	38							

Weed Management

- Ground cover management systems
- Weed control strips with ground covers between rows
- Permanent ground covers
- Pre-plant cover crops
- Natural ground covers

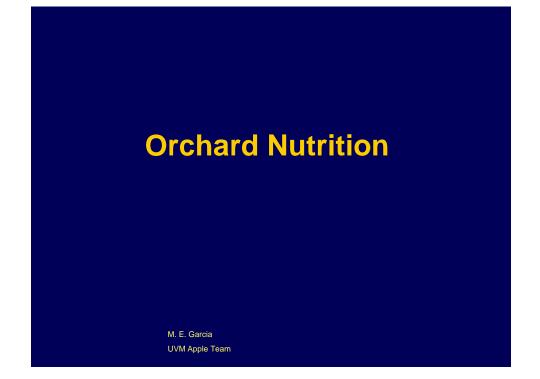

Weed Management Practices								
TOOL	ADVANTAGES	DISADVANTAGES						
Cultivation	Effective Non-selective Equipment readily available Considered "Green"	May damage soil structure Spreads perennial weeds May damage tree /roots Short term control						
Mulching	Effective Non-selective Holds moisture Considered "Green" Long-term control	Availability of mulch Cost of mulch/application Attractive to rodents Must be free of seeds						
Mowing	Rescue treatment Quick suppression Equipment available Reduce seed spread	Weeds may still compete Quick regrowth Several mowing required May damage young trees						
Herbicides	Effective Easy to apply Can be selective Timely	Requires at least 2% OM Directed spray equipment Effects on pest complex Cost varies						

Table 2. Estimated cost per acre of orchard to establish and maintain natural and synthetic mulches, herbicides, grasses or cultivation in a 6-foot wide strip in a NY orchard Integrated weed and soil management in fruit plantings CCE-242)

System	Material(\$/ acre	Labor (\$/acre)	Total (\$/acre/year)
Hay-straw	150-400	145	300-550
Woodchip	70	295	130-315(1-3yr)
1.2 mil poly	150	35	185
Herbicide	10-50	5	15-55
Mowed sodgrass	30	40	70-100
Clean cultivation	15	35	59

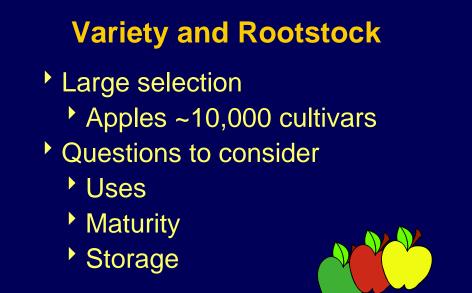
Weed Management

- Herbicides
- Types
 - Herbicides labeled for orchards
 - Herbicide efficacy on various annual weed species

		e for Apple Tree. (For ge		oses only. T <u>o be</u>
		soil analysis are available		
Element	Form		Ground	Foliar
N	Urea	Pink and first cover		9#/ Ac (1X-3X)
	or			
	Calcium nitrate	Before bloom	2-4#/tree	
		+ 6 weeks	2-4#/tree	
	or			
	Ammonium nitrate	Before bloom	1-2# /tree	
		+ 6weeks	1-2# /tree	
Ca	Calcium chloride	7 to 10 days APF		4- 14# actual C /season
		4-6 sprays 14 days apart		
Mg	Dolomitic limestone	In the fall or Spring		
Mg, K	Sul-Po-Mag	Before bloom	2# /tree	
	or			
	Epson Salt	PF, 1st and 2nd cover		10-15# /Ac
B	Solubor	Prebloom, PF,1st, or 3rd cover		4-8#/ Ac
	or			
	Granular	Before bloom		7-8#/Acre
Mn	Manganese sulfate	First cover		5#/ Ac
		or 3 sprays of Mn containing fungicide		
Zn	Zinc sulfate	Dormant or post-harvest		5-11 # / Ac
Cu	Bordeaux or	Dormant		4-6# / Ac
	Cupper sulfide			

Mineral nutrition

- Nitrogen
- Potassium
- Calcium
- Magnesium


M. E. Garcia UVM Apple Team

UVM Apple Team

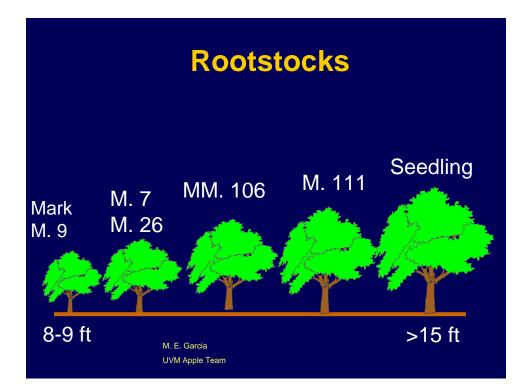
Boron

- Phosphorous
- Manganese
- Copper
- Iron
- Zinc

Cultivars • http://orchard.uvm.edu/uvmapple/ bot/cultivars/index.htm

- What to look for in a cultivar
 - Type and use for fruit
 - Disease resistance

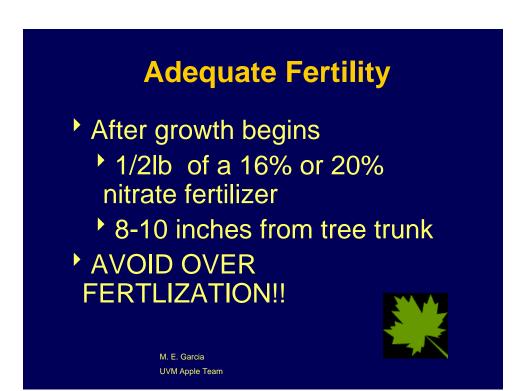
M. E. Garcia UVM Apple Team

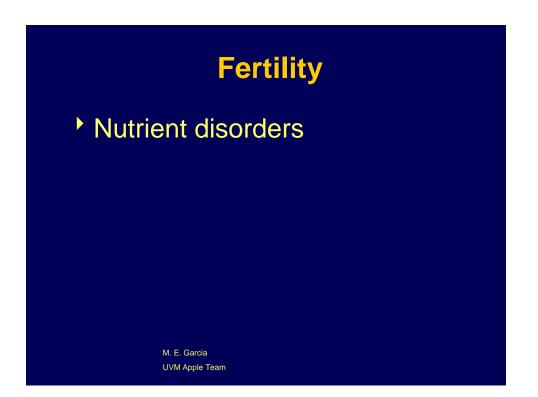

- Type of tree
- Climate adaptability
- Market demand
- Time of harvest

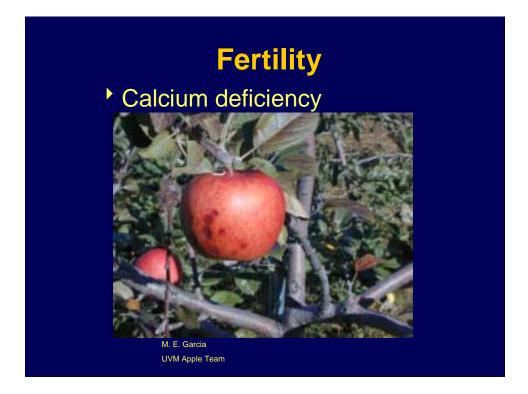
M. E. Garcia UVM Apple Team

Pollination

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

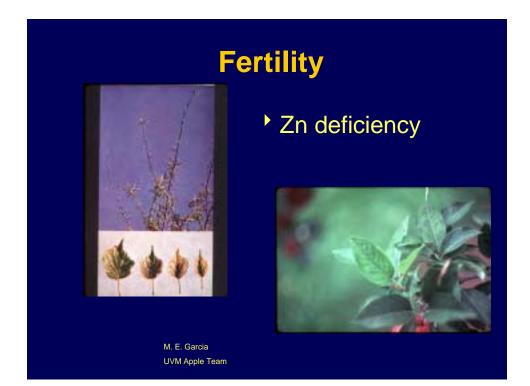


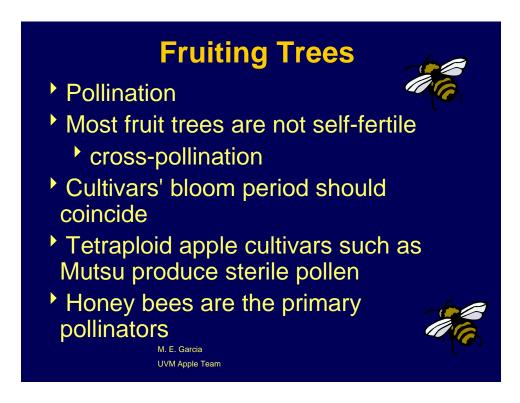

Adequate Fertility


- Major nutrients for growth are nitrogen, phosphorous, and potassium (N-P-K)
- As a rule, no fertilizer at planting time
- Soil preparation should be done in Fall before planting

Adequate Fertility

- For one year old and older trees
 When growth begins, 1/2lb of 10-10-10/ age of tree
 - In a band or a circle at least 18 inches from the trunk
 - No fertilizers after June


Fertility


Boron deficiency

1

Boron toxicity

Fruit Thinning

- Removing some of the developing fruit
 - To provide top quality, full-sized fruit
 - To ensure good return bloom the following year
- Time of thinning depends on the time of flower initiation according to the species

T	ime of flower i	nitiation of apples
Fruit	Initiation	Flowers borne on
Apple	Mid-June- mid-July	Terminal buds. 2yr.spurs
	M. E. Garcia UVM Apple Team	

ruit	TYPE OF BUDS	FLOWER BUB LOC. AND TYPE	INFLORES CENCE	Flowe R NUMBE R	TIME OF FLOWER INITIATION	CHARC. 1ST YEAR WOOD	CHARC. 2SN YEAR WOOD	CHARC 3RD YEAR WOOD	WOOD PRODUCTI VITY
Apple	Veqetative and mixed	Terminal epiqynous	Determinate	5	Early summer	Where buds are attached	Will initiate flower buds for next season	Where fruit is found	Youngest wood most productive
Pear	Vegetative and mixed	Terminal epiqvnous	Indetermina te	7-8	60 days past full bloom	Similar to apple	Similar to apple	Similar to apple	Similar to apple
Peach	Unmixed	Lateral perigynous	Solitary	1	Midsummer	Where fruit is located	Inferior flower buds		
Cherry	Unmixed clusters	Lateral preigynous	Cluster	2-4	Julv, after crop is harvested	Cherry- spurs	Sweet Cherry- best spurs Sour cherry-		Long productivity 10 -15 vears in sweet cherry
Plum	Unmixed	Lateral perigynous	1-3 flowers/ bud	1-3	Mid to late summer		Most vigorous spurs Fruit production		Similar to apple, spurs older than 4 years may die

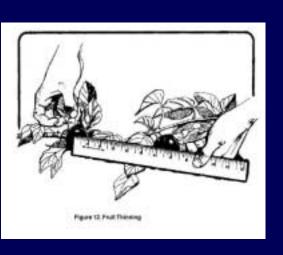
- Fruit ThinningHow to thin apples by hand
 - As early as possible after bloom
 - Use small hand pruners
 - Cut off the young fruit by their stems
 - Leave the largest fruit
 - Fruit should be 4-6 inches
- Goal: Keep the "king" fruit
- June drop

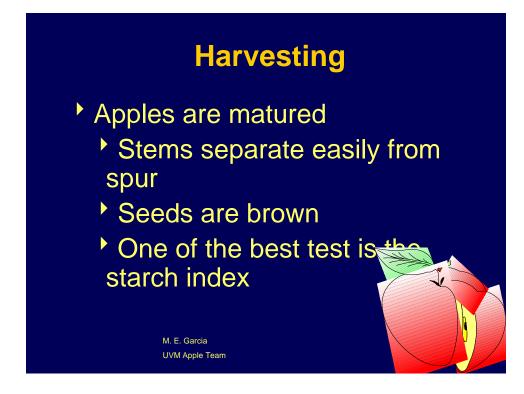
UVM Apple Team

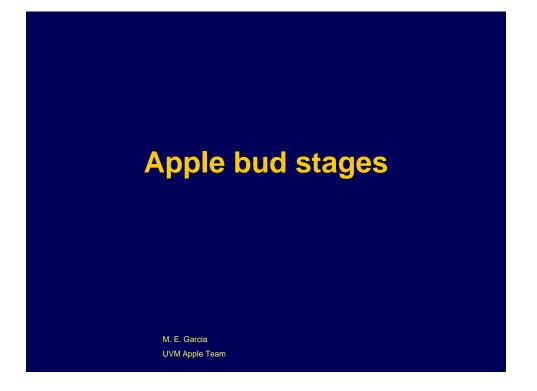
Fruit thinning Fruit thinners M. E. Garcia UVM Apple Team

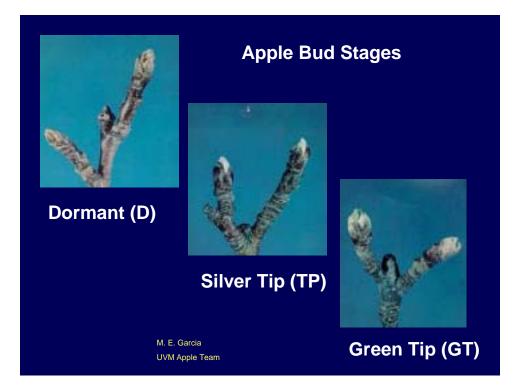
Table 9. Thinning Windows	(Apple Thinning C	Guide)			
Thinning Window	Bloom	Petal Fall	Early Fruit Set	Late Fruit Set	Closing
DAFB		5 to 10	11 to 15	16 to 20	20+
Fruit Size (mm)		PF to 8	8 to 12	16 to 20	20+
Stage (mm)	Full Petal Bloom Fall	68	10 15	20	25
General ThinningSuccess	Fair	Best	Good	Good	OK
Past Thinning			Traditional Window		Rescue thinning

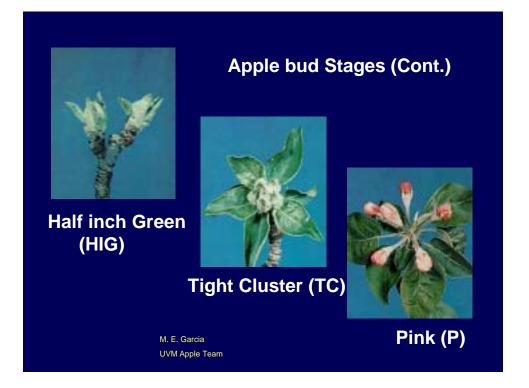
Thinning recommendations

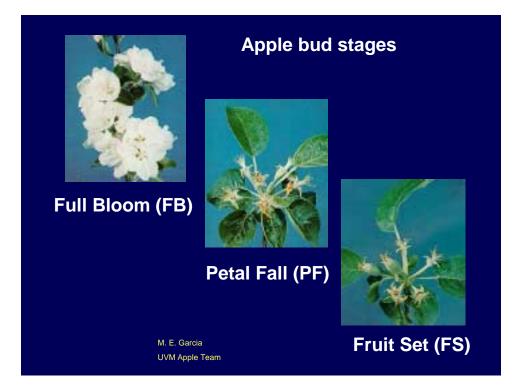

able 10. Specific thinning recommendations								
Cultivar Stage of fruit development								
Petal fall to 3 mm	7 to 12 m m	15+ m m						
Sevin	Sevin+2.5-7.5 NAA or Sevin+50-75 Accel	Sevin						
Sevin	Sevin	Sevin						
Sevin	Sevin (+75 Accel if needed)	Sevin						
Sevin	Sevin+7.5-10 NAA or Sevin+50-75 Accel	Sevin						
Sevin+5-7.5NAA	Sevin+5-7.5 NAA	Sevin						
Sevin	Sevin+75-100 Accel	Sevin						
Sevin	Sevin+10-15 NAA or Sevin+75-100 Accel	Sevin						
Sevin	Sevin+5-7.5 NAA	Sevin						
Sevin	Sevin+75-100 Accel	Sevin						
Sevin	Sevin+5-7.5NAA	Sevin						
	Stage of fruit dev Petal fall to 3 mm Sevin Sevin Sevin Sevin Sevin Sevin Sevin Sevin Sevin Sevin Sevin Sevin	Stage of fruit developmentPetal fall to 3 mm7 to 12 mmSevinSevin+2.5-7.5 NAA or Sevin+50-75 AccelSevinSevinSevinSevinSevinSevin(+75 Accel if needed)SevinSevin+7.5-10 NAA or Sevin+50-75 AccelSevinSevin+7.5-10 NAA or Sevin+50-75 AccelSevinSevin+5-7.5 NAASevinSevin+5-7.5 NAASevinSevin+75-100 AccelSevinSevin+75-100 AccelSevinSevin+5-7.5 NAASevinSevin+5-7.5 NAASevinSevin+5-7.5 NAA						


In all cases, Sevin is recommended to be applied at 1 at Sevin XLR per acre, and NAA and Accel recommendations are in ppm. * According to Jim Schupp (U. Maine), NAA at 10 –15 PPM as close to petal fall as possible + Sevin followed by a second application of NAA without Sevin is very effective.


UVM Apple Team


Fruit Thinning


As a general rule for apples, 18 leaves are necessary for one apple to develop satisfactorily



Pruning and Training See Presentation on

Pruning and Training

