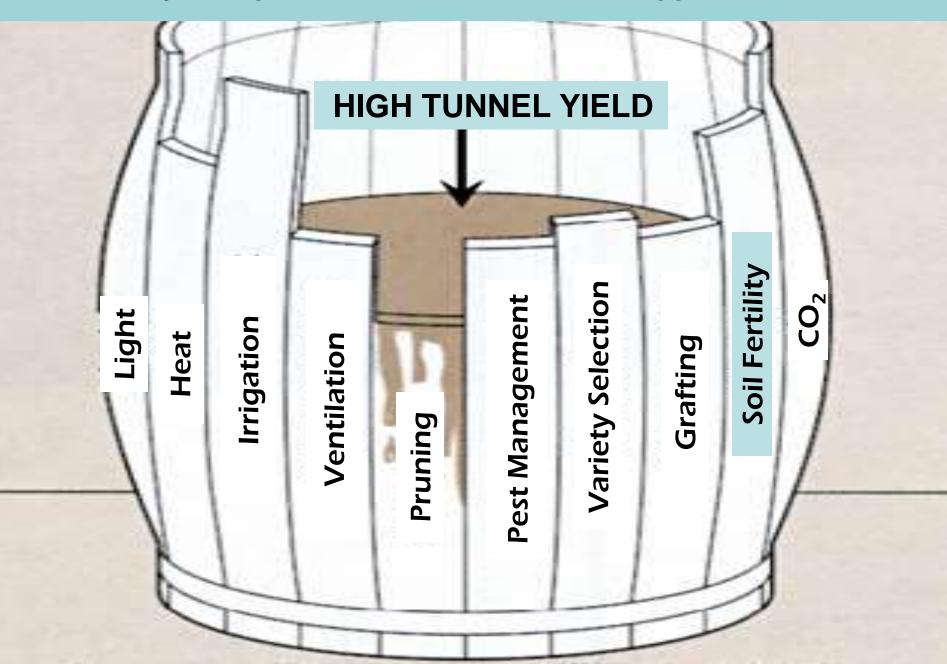
High Tunnel Tomato Production for Organic Soil-Based Systems

Kootenay and Boundary Farm Advisors January 11, 2022 Vern Grubinger

https://www.uvm.edu/extension/horticulture/commercial



High tunnels / hoophouses / greenhouses have proliferated on vegetable farms in the Northeast U.S.

Most production is "in the ground"

Soil fertility is important, but a whole-tunnel approach is needed

Many different tunnel systems...so guidance varies

Many different types of production often as sequences of crops in the same tunnel

Rooting volume matters: small=less buffered

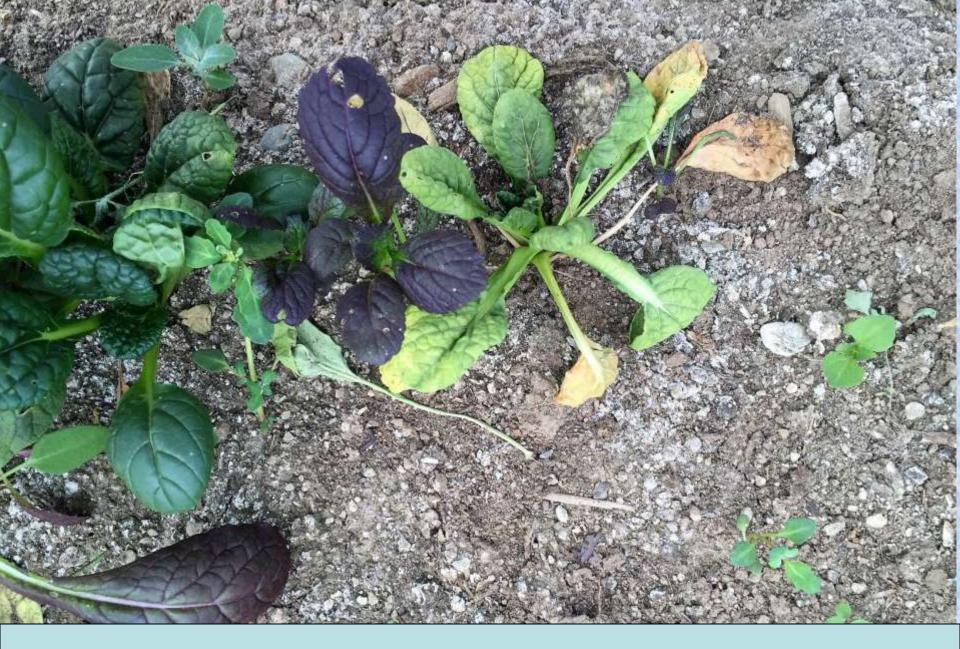
In-ground growing is highly buffered, due to soil volume

The ground is typically amended with lots of compost and nutrients so it is somewhere between a field soil and a potting soil

If soil on site is poor quality or compacted, make raised beds

Nutrients affect quality not just yield

Nutrients may run out when growing transplants in a mix



Nutrient deficiencies also occur in mature plants

Excess nutrients can lead to high salts in a potting mix

Salts can build up in tunnel soils, especially near the surface

Organic growing medium is a 'black box' It may look good, feel good, smell good...what's in it?

Soil testing provides data about nutrient content, pH, salt level

Different tests for different information

Field soil test for reserve nutrients (modified Morgan's, Brays, Melich-3)

Potting soil test for soluble nutrients (Saturated Media Extract)

<u>**Tissue analysis</u>** for nutrient levels in plants (concentration of elements in dry leaves)</u>

What's available now (soluble)... and later (reserve)... and what was used by plants (uptake)

SME, field soil test, and tissue tests can provide answers

'Reading the plants' is a good idea, but it's not precise, and by the time you see symptoms it may be hard to recover

Different tests require different samples all should be a composite sample from 'representative' area

Field soil test. 1 cup soil, stick to same time of year

Saturated media extract. 1 pint of soil, warm and moist, several weeks before setting transplants

<u>Tissue analysis.</u> Youngest fully mature leaf (4th or 5th from top of tomato plants) starting at fruit set

All types of tests have this process

1) Proper sampling

2) Analysis by the lab

3) Interpretation of results

4) Recommendations

Are you ready for some examples of test results?

The next few slides have lots of data. This may disturb some brains. Viewer discretion advised.

Example field soil test results – Univ. of Vermont lab

Nutrient	Lo	w N	Iedium O	Optimum I	High or Excessive	
Phosphorus (P):						
Potassium (K):						
Magnesium (Mg):						
Analysis	Value Found	Optimum Range ** (or Average *)	Analysis	Value Found	Optimum Range ** (or Average *)	
Soil pH (2:1, water)	6.9		Boron (B)	0.7	0.3*	
Modified Morgan extractable, ppm		Copper (Cu)	0.2	2. 0.3*		
Macronutrients			Zinc (Zn)	13.8	3 2.0*	
Phosphorus (P)	15.1	4-7	Sodium (Na)	6.0) 20*	
Potassium (K)	106	100-130	Aluminum (Al)	24	35*	
Calcium (Ca)	2542	**	Soil Organic Matter %	% 8.3	**	
Magnesium (Mg)	110	50-100	Effective CEC, meq/1) **	
Sulfur (S)	8.0	11*	Base Saturation, %			
Micronutrients			Calcium Saturation	90.1	40-80	
Iron (Fe)	6.2	7.0*	Potassium Saturatio	on 1.9	2.0-7.0	
Manganese (Mn)	7.1	8.0*	Magnesium Saturat	ion 6.5	5 10-30	

Example SME results – Univ. of Maine soil test lab

-				
рН	6.0 - 7.0	7.4		HIGH
Soluble Salts	2.0 - 4.0 mmhos/cm	2.57	mmhos/cm	ок
Organic Matter	8 - 12 %	8.3	8	OPTIMUM
Nitrate-N	100 - 200 ppm	30.5	ppm	LOW
Ammonium-N	< 10 ppm	< 0.5	ppm	OK
Phosphorus	1 - 5 ppm	1.4	ppm	OPTIMUM
Potassium	150 - 275 ppm	12	ppm	LOW
Magnesium	> 60 ppm	151	ppm	OPTIMUM
Calcium	> 250 ppm	403	ppm	OPTIMUM
Aluminum	< 10 ppm	0.1	ppm	OK
Boron	0.05 - 0.50 ppm	0.05	ppm	OPTIMUM
Copper	0.01 - 0.5 ppm	0.027	ppm	OPTIMUM
Iron	0.3 - 5.0 ppm	0.06	ppm	LOW
Manganese	0.1 - 3.0 ppm	0.02	ppm	LOW
Sodium	< 100 ppm	74	ppm	OK

	PERCEN	T (MAJOR NUTRIENT	S), PPM(ALL OTHERS)
Nutrient	GNU 5 MAT	GH2 Duchess	Optimum Range
N	3.80	1.79	3.0 - 5.0
Ca	1.88	2.91	0.9 - 3.0
K	2.27	1.11	2.5 - 5.0
Mg	0.697	0.407	0.3 - 1.0
P	0.359	0.213	0.2 - 1.0
Al	223	155	
В	37.0	39.7	20 - 50
Cu	9.67	6.79	5 - 20
Fe	86.8	303	40 - 200
Mn	22.3	42.9	30 - 125
Zn	21.8	10.1	25 - 60

Tunnel tomatoes: plan for heavy nutrient demand, yields can be <u>much</u> greater than in the field

Nutrient needs depend on yield potential

Nitrogen application rate based on yield goal

		•••				
	Yield	=Yield	=Yield	Approx.	N need	N need*
	goal	lb/ft ²	lb/stem	plant	lb/acre	lb/1,000 ft ²
	lb/acre		= lb/4 ft ²	height	@ 90% recovery	
Low	40,000	1	4	8'	100	2.3
yield						
Medium	80,000	2	8	12'	200	4.6
yield						
		-		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Good	120,000	3	12	16'	300	6.9
yield						
		_	1.0			
High	160,000	4	16	20'	400	9.2
yield				1. A. P. S. W.		

https://go.uvm.edu/tunnel-recs

K₂0 application rate based on Modified Morgan's soil test result

soil test result:	Low <400 lb./A		Medium 400-800 lb./A		High/optimum 800-1200 lb./A		Excessive > 1200 lb./A	
	lbs/acre	lbs/ 1000 ft ²	lbs/acre	lbs/ 1000 ft ²	lbs/acre	lbs/ 1000 ft ²	lbs/acre	lbs/ 1000 ft ²
Low yield	300	6.9	200	4.6	100	2.2	0	0
Medium yield	450	10.3	300	6.9	150	3.4	0	0
Good yield	600	13.8	400	9.2	200	4.6	0	0
High yield	750	17.2	600	13.8	300	6.9	0	0

What about leafy greens, winter growing?

A lot less nutrients are needed, but data are lacking. Soil testing before planting still makes sense

Know your organic fertilizer options, beyond compost

Common organic soil amendments

- N: soy, peanut, feather meal; Chilean (sidedress)
- P: bone meal, bone char, rock phos
- K: potassium sulfate, sul-po-mag, greensand
- Ca: lime, gypsum
- Mg: dolomitic lime, sul-po-mag, epsom salts
- Blends: ProGro, Cheep-Cheep, alfalfa meal etc.
- Micros: compost, borax, Azomite, chelates
- Organic matter: compost, peat moss

Agricultural limestone Calcite (CaCO₃) or Dolomite (CaCO₃ + MgCO₃)

Calcite: ~ 40% Ca and 0.5% Mg Dolomite: ~ 22% Ca and 13% Mg

TIGERORGANIC SULPHUR

EVERY ACRE, EVERY CROP, EVERY YEAR

Sulfur lowers soil pH in tunnel, just like for blueberry fields

Peat moss helps maintain or increase organic matter when compost is not needed or is unavailable

Apply 1 to 3 bales (3 cu. ft.) of compressed peat moss per 1,000 sq. ft. (plus 10 lb lime/bale if needed)

PEAT

MOSS

Use blended fertilizers only if all 3 of N-P-K are needed

PRO-GRO 5-3-4 A NATURAL/ORGANIC FERTILIZER

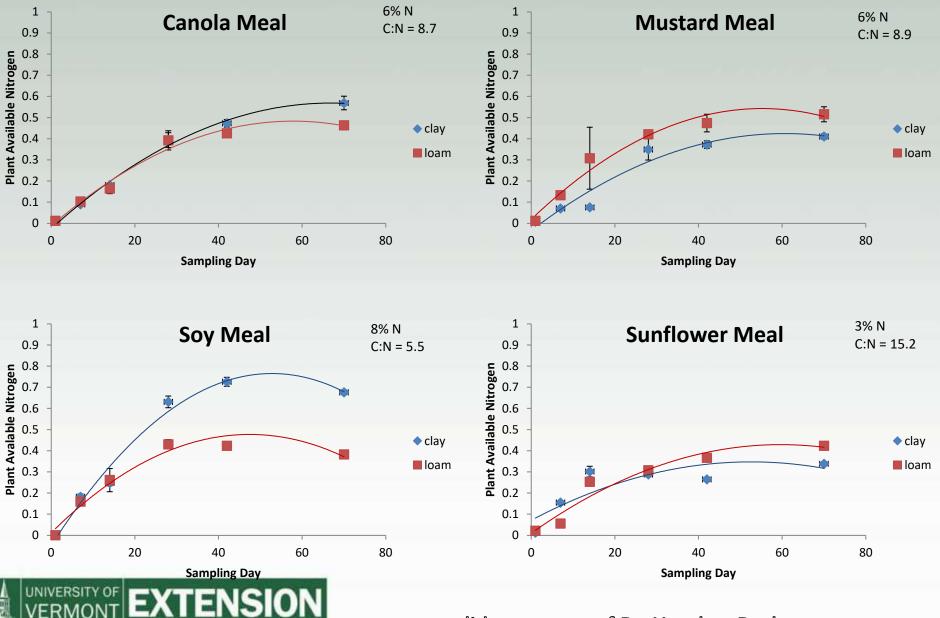
This product is blanded from the following list of natural ingredients:

BONEMEAL ROCK PHOSPHATE COLLOIDAL PHOSPHATE CYSTER MEAL KELP MEAL

GREENSAND LANGBEINITE VEGETABLE PROTEIN MEALS MEAT AND BONE MEAL NATURAL NITRATE OF SODA LEATHER NEAL FISH MEAL BENEFICIAL BACTERIA HUMATES TFACE MINERALS

An organic N fertilizer, allow time for microbial activity to convert all the way to nitrate-N

"Chilean nitrate" is soluble, good for fertigation if needed



Use about 1 lb per 1,000 sq. ft. in at least 100 gal. water

Seed and leaf meals – nutrient release with microbial activity

Seed meals – slow steady N release over growing season

COMMUNIT

HEALTHY

CULTIVATING

slide courtesy of Dr. Heather Darby

P fertilizer, relatively high availably. Steamed bone meal is another, similar option

BONE CHAR 0-16-0

BONE CHAR 0-16-0

BONE CHAR 0-16-0

1 5100

HIRO

16-0

HAR 0-16-0

0-16-0

For K, use potassium sulfate, 0-0-50, unless you also need magnesium

Sul-po-mag 0-0-22-11 Mg (same as langbenite, K-mag)

Potassium sulfate "fines" are small particles, more soluble. Can be used to fertigate,

MINE MINE

EPSOM SALT MAGNESIUM SULFATE USP

) Soaking Aid

For minor discomfort and tired feet

🕀 A Saline Laxative

For the short term relief of constipation

Ø Plant Nutrient

Epsom salts for Mg

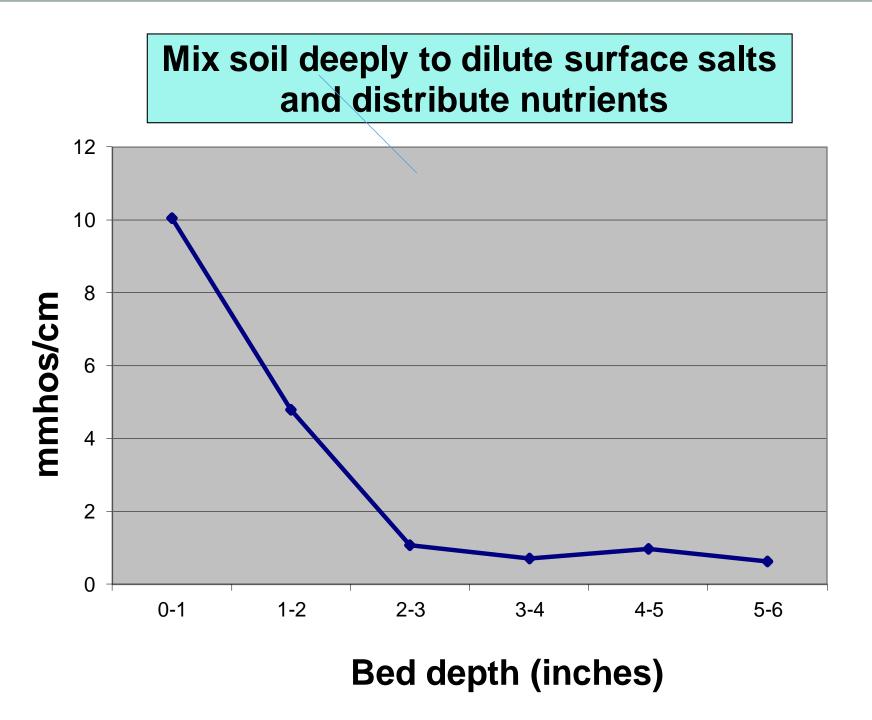
Gypsum adds Ca, doesn't change soil pH

Since

GYPSUM

Care for Your Sail

If pH is neutral, and compost has been added, trace elements should not be OK. Can add volcanic minerals just in case.



Use about 1 lb per 1,000 sq. ft. of growing area

Spread "front loaded" soil amendments evenly, mix in well

Many tunnels have lower yields in areas by sidewalls due to lower fertility, cold air and water infiltration, low TLC?

How important is cover cropping to tunnel soil fertility? There are pros and cons.

"Plant-mediated IPM" visit the <u>UVM high tunnel IPM pages</u>

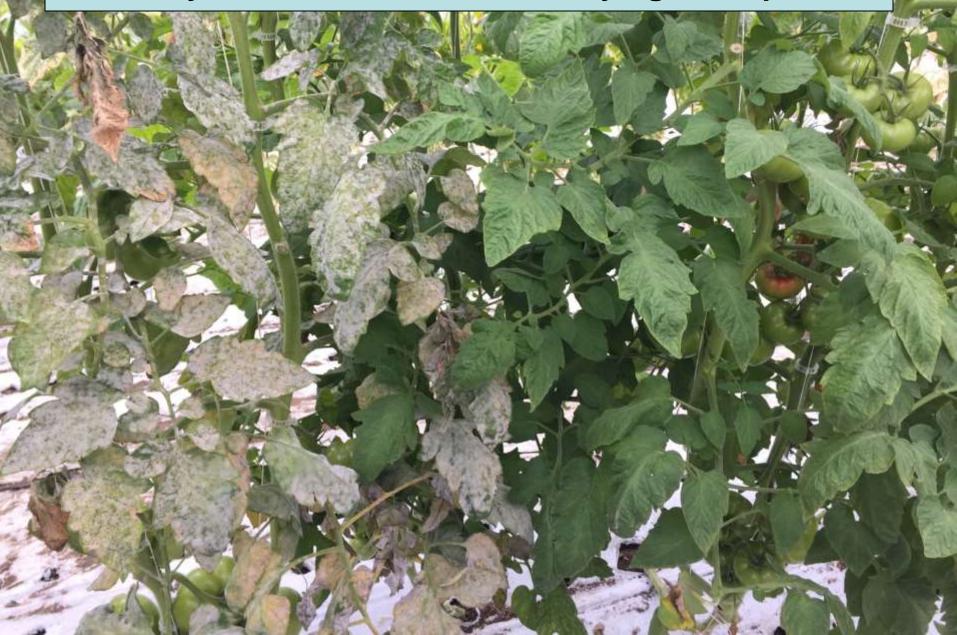
Thrips indicator

Traps spider mites

Habitat for natural enemies

Get to know your beneficial insects, order in advance for control of expected pests

Monitor and scout for early pest detection



Insect screen is being used primarily to exclude cucumber beetle

Need to account for reduction in air movement/ventilation

Some diseases are more serious that others... Powdery mildew – careful when buying transplants!

If you're going to spray, get a good (electric) sprayer

The I consult balley Interfere and consult of the TOP of the second of the Consult of the consult of the second of the consult of the consult of the second of the consult of

Leaf mold (*ugly but not so scary*): varieties and ventilation for management

Ventilation is key to good yields, and disease prevention

High roll up sides help with passive air flow

You can extend short ground posts

Simple peak vents at top of end walls can help a lot

Horizontal Airflow Fans (HAF) mix the air to prevent temperature, humidity, CO₂ gradients

Air circulation is important, along with ventilation

Prune to 1 or 2 stems, remove suckers, remove lower leaves to promote air flow and reproductive growth

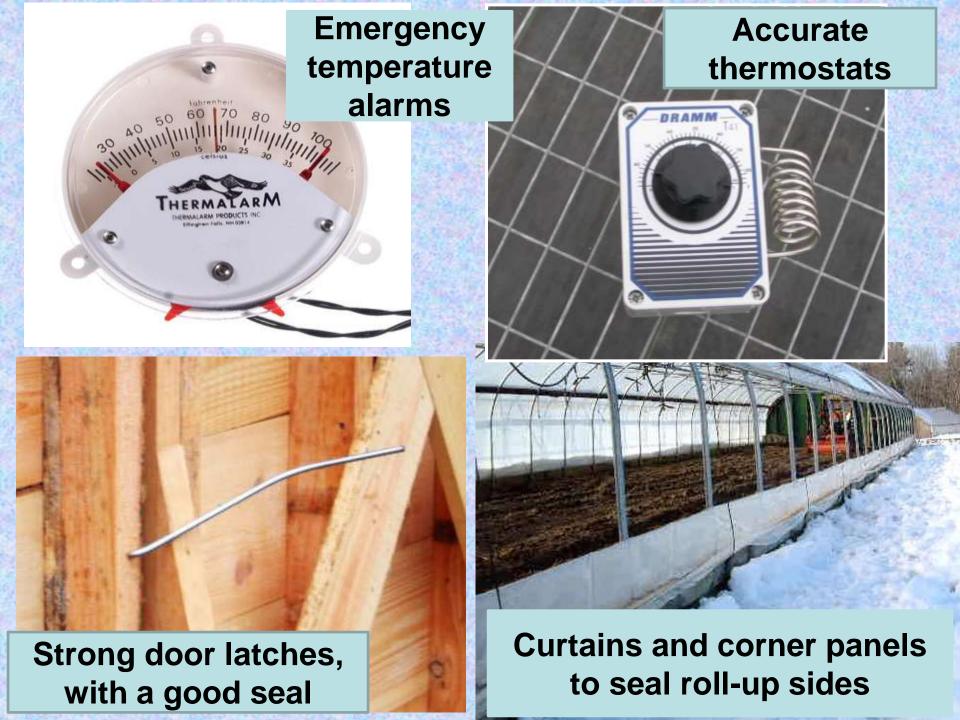
Steaming soil reduces chickweed; may reduce soil diseases. Mostly being used for winter greens production

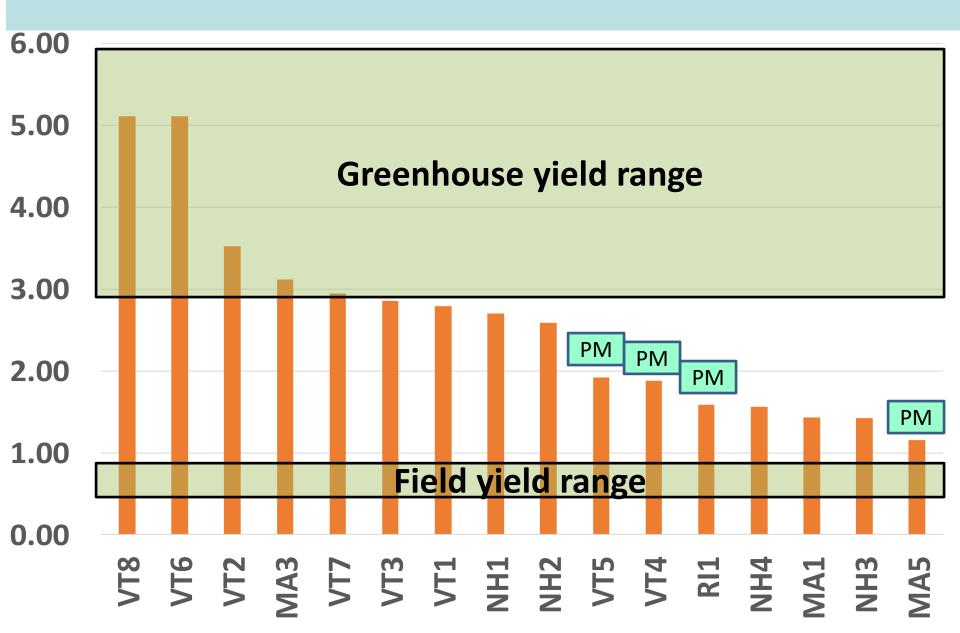
"Sock" distributes steam under tarp, heats soil surface to ~160° F +/-

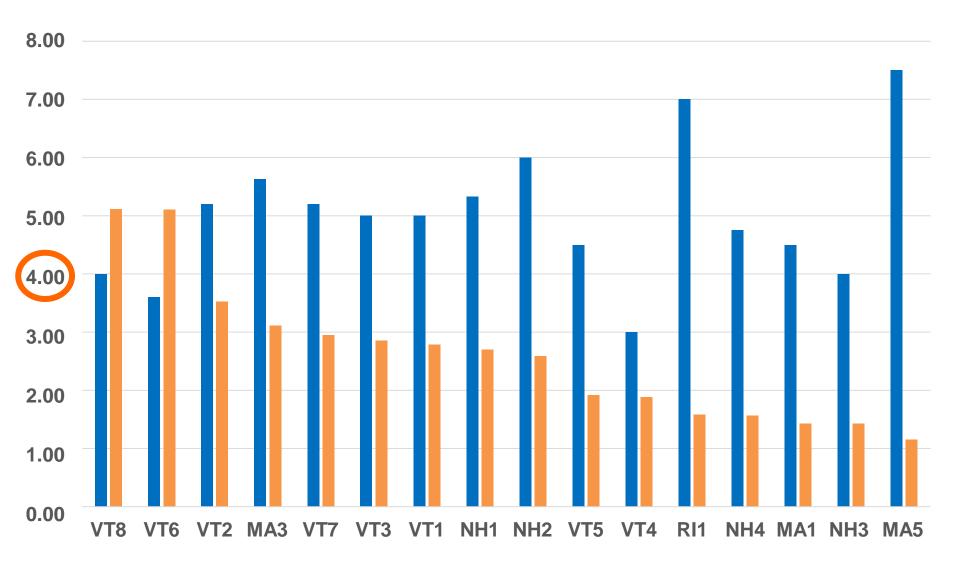
Many growers use grafted tomato plants with rootstocks that tolerate soil disease and increase vigor

Warm irrigation water avoids 'thermal shock' to plants

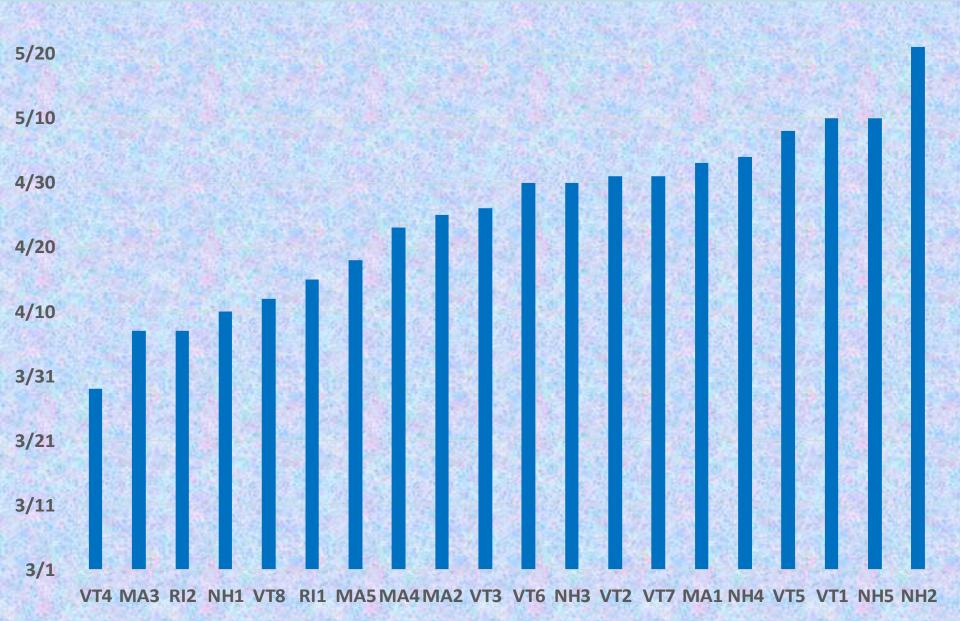
Use enough drip lines to moisten the entire rooting area when irrigating; dry areas = no roots = no nutrient use


Plastic mulches control weeds and also allow roots to proliferate near surface: warm, fertile, O₂


Soil compaction does not appear to be widespread, but it can be a problem in tunnels


Test before planting using a penetrometer in multiple locations. If average PSI is over 300, subsoil or form raised beds.

Tunnel tomato yields in lbs./sq. ft. on 16 farms


Tomato yield (orange) in lbs./sq. ft. and plant density in sq. ft./stem (blue)

While high density can increase yield, it can also increase humidity and foliar diseases

Transplant date often depends on markets; little _{5/30}advantage to planting early without ground heat

https://farm-energy.extension.org/root-zone-heating-systems-for-greenhouses/

May

July

August

September

November

Long season, high density, good management, high yield = 6.8 lb/sq ft

May

Short season, low density, disease issues, low yield = 1.3 lb/sq ft

Summary recommendations

- Estimate your target yield, then track yields
- Consider tighter plant spacing, grafting
- Improve passive ventilation, use HAF for circulation
- Assure irrigation lines provide uniform soil moisture
- Keep up with leaf pruning, scout for pests often
- Use biocontrols, habitat plants; spray properly if you do
- Adjust soil pH to 6.5 to 7, use compost then peat for OM
- Monitor available, reserve, and plant tissue nutrients
- Provide sufficient N and K based on realistic yield goal

Thanks!

vernon.grubinger@uvm.edu