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Rudy RF, Koide M, Wellman GC. Suppression Of Voltage-Gated Potassium Channels In 

Brain Parenchymal Arterioles: A Potential Role For Protein Kinase C Activation. 

−Subarachnoid hemorrhage (SAH) caused by aneurysm rupture is often associated with 

decreased cerebral blood flow and the development of severe neuronal deficits in patients who 

survive. Persistent intracerebral (parenchymal) artery constriction after hemorrhage contributes 

to morbidity. This constriction may be due in part to suppression of voltage-gated potassium 

(KV) channels causing membrane potential depolarization, enhanced Ca2+ influx and 

vasoconstriction. Previous studies have shown that protein kinase C (PKC) is activated following 

SAH and that KV currents are suppressed in myocytes of larger diameter cerebral arteries from 

SAH model animals. Here, we examined PKC involvement in SAH-induced KV current 

suppression in parenchymal arterioles using the conventional whole cell patch clamp technique. 

We found that KV currents were suppressed in myocytes obtained from SAH model rats 

compared to cells obtained from control animals. We also observed that the PKC activator 1,2-

dioctanoyl-glycerol suppressed KV currents in control but not SAH myocytes, indicating PKC 

may be maximally active following SAH.  PKC inhibitor chelerythrine did not have a significant 

effect on KV channel activity in control or SAH myocytes.  In summary, our data are consistent 

with increased PKC activity following SAH and contributes to suppression of KV channels.  

 

vascular smooth muscle; protein kinase c; voltage gated potassium channel; subarachnoid 

hemorrhage 
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ANEURYSMAL SUBARACHNOID HEMORRHAGE (SAH) is rupture of cerebral arteries 

leading to bleeding onto the brain surface. SAH accounts for 7% of all strokes, afflicting roughly 

30,000 people in the United States annually (4, 8). Release of blood into the subarachnoid space 

from cerebral arteries leads to a sudden increase in intracranial pressure, which is responsible for 

significant mortality in patients prior to reaching a hospital. SAH is marked by very high 

mortality rates as 45% of individuals suffering from aneurysm rupture die within 30 days from 

the initial increase in intracranial pressure or from subsequent rebleeds at the rupture site (6). 

Survivors are typically treated surgically to decrease risk of rebleeding at the site of rupture (37). 

However, in these survivors, up to 50% suffer from a syndrome of delayed ischemic neurological 

defects beginning roughly 4 days after the initial bleed (37, 43). These deficits are the leading 

cause of death and disability in survivors of the initial insult (17). Cerebral artery constriction, 

called vasospasm, is thought to be responsible for the delayed morbidity. Despite aggressive 

intervention, vasospasm remains difficult to effectively treat (7).  

Parenchymal arterioles play a critical role in supplying nutrients to the brain cortex. 

Following SAH, constriction of parenchymal arterioles reduces nutrient delivery, a dangerous 

situation due to the lack of collateral blood supply in the cortex. There is increasing evidence that 

vasospasm of parenchymal arterioles contributes to the morbidity and mortality after SAH (33, 

44, 46). In the 20th century, the prevailing thought was the delayed deficits from SAH were a 

result of large cerebral conduit (pial) artery vasospasm. However, the recent CONSCIOUS 1 and 

2 clinical trials showed that while clazosentan, an endothelin-1 receptor antagonist, significantly 

decreased large artery constriction, it did not relieve SAH symptoms suggesting large artery 

vasospasm is not the major contributor to delayed deficits (23, 24). These and other findings 

suggest that dysfunction of parenchymal arterioles may be playing a more significant role in 
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these delayed neurological deficits. Recent evidence in rabbit parenchymal arterioles suggests 

parenchymal arteriole myocytes may be more sensitive to oxyhemoglobin, a component of 

blood, than pial artery myocytes, suggesting they may be more responsive to SAH (21). 

Voltage gated potassium (KV) channels are a large family of distinct channels of several 

different subtypes. In smooth muscle, KV1 and KV2 have been observed (3, 14, 42). KV channels 

regulate parenchymal arteriolar tone by controlling smooth muscle membrane potential (27). 

Normally, KV channels open in response to membrane depolarization, allowing potassium (K+) 

ions to flow out of the cell down their electro-chemical gradient. Decreased KV channel activity 

promotes membrane potential depolarization, which results an increase in the open state 

probability of voltage dependent calcium channel (VDCC) and increased intracellular calcium 

ion (Ca2+) concentration. Increased intracellular Ca2+ promotes contraction and vasoconstriction 

(19). Koide et al. in 2013 have showed KV1 suppression in parenchymal arterioles following 

SAH is due to activation of the HB-EGF/EGFR pathway (21). However, activation of this 

pathway in control myocytes does not suppress the KV current to the extent observed in SAH 

myocytes indicating other mechanisms may contribute to KV current suppression after SAH. 

The protein kinase C family is a group of serine/threonine kinases comprising at least 10 

subtypes that regulate many different cellular effector responses from signals originating at the 

plasma membrane (5, 41). In smooth muscle, PKC has been shown to be involved in regulating 

contraction via phosphorylation of various effectors (22). Activation of PKC after SAH has been 

implicated in contributing to vasospasm in pial arteries (25, 29, 30). In addition, the 

concentration of diacylglycerol (DAG) an endogenous activator of PKC has been shown to be 

elevated in pial arteries 4-7 days following SAH (35). Koide et al. in 2007 demonstrated the HB-

EGF/EGFR pathway responsible for suppression of KV1 channel activity in rabbit cerebral 
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arteries following SAH is independent from PKC, and that addition of a PKC activator further 

suppressed KV current after treatment EGF treatment (20).  The role of PKC in parenchymal 

arterioles following SAH has not been determined. 

Here we examined the effect of PKC activators and inhibitors on KV current in parenchymal 

myocytes in control and SAH model rats. We found that the PKC activator 1,2-dioctanoyl-

glycerol (DOG) significantly suppressed KV currents in control but not SAH myocytes, 

indicating PKC may be maximally active following SAH. The PKC inhibitor chelerythrine had 

no significant effect on KV current in control or SAH myocytes.  The inability of PKC inhibition 

to increase KV current may be a result of the downstream target of PKC already being 

phosphorylated.  These data suggest PKC activity is increased following SAH and contributes to 

suppression of KV channels. 

 

MATERIALS AND METHODS 

SAH Model. All experiments used 10-12 week old male Sprague-Dawley rats. SAH model 

rats used in this study are described by Nystoriak et al (2010) (32). Briefly, autologous 

unheparinized blood (0.5 ml) drawn from the tail artery was injected into the cisterna magna 

under isofluorane anesthesia. Twenty-four hours later, a second injection of blood was delivered 

by repeating the above procedure. Buprenorphine (0.01 mg/kg) was given every 12 h (for 36h, 

then as needed) as an analgesic. Animals were euthanized via pentobarbital (60mg/kg) and 

decapitated four days after the initial blood injection into the cisterna magna (32). All 

experiments were conducted in accordance with the Guide for the Care and Use of Laboratory 

Animals (NIH Pub. No. 85-23, revised 1996) and followed protocols approved by the 

Institutional Animal Use and Care Committee of the University of Vermont. 
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Tissue Preparation. Parenchymal arterioles were dissected from rats euthanized the same 

day. Following decapitation, rat brains were kept in cold artificial cerebral spinal fluid containing 

(in mM) 125 NaCl, 3 KCl, 18 NaHCO3, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, and 5 glucose, 

bubbled with 5% CO2, 20% O2 and 75% N2 (pH 7.40) during dissection. A wedge was cut 

around the middle cerebral artery (MCA). The wedge tissue was agitated, and the MCA was 

carefully peeled from the cortex. Parenchymal arterioles branching from the MCA were 

extracted out of the cortex along with the MCA. Parenchymal arterioles were cut from the MCA 

and tied in bundles for digestion. 

 Isolation of Single Arteriolar Myocytes. Dissected parenchymal arterioles were 

enzymatically dissociated into single arteriolar myocytes. Arterioles were incubated in papain 

solution (0.3 mg/mL papain and 0.7 mg/mL 1,4-dithioerythriol (DTE)) in Ca2+ free glutamate 

isolation solution (GIS) that contains (in mM) 55 NaCl, 5.6 KCl, 80 L-glutamic acid, 2.0 MgCl2, 

10 HEPES and 10 glucose (pH 7.3)) at 37° C for 17 minutes, followed by incubation in 

collagenase solution (0.7 mg/mL collagenase F and 0.3 mg/mL collagenase H in GIS containing 

100 µM Ca2+) at 37˚ C for 10 minutes. Arterioles were then washed in GIS containing 100 µM 

Ca2+ three times for 10 minutes each on ice. Arterioles were then gently triturated using a fire-

polished Pasteur pipette to release individual myocytes (20). 

Measurement of Whole Cell K+ Currents. Outward whole cell K+ currents were measured 

using the conventional whole cell configuration of the patch clamp technique (Figure 1A). The 

bath solution contained (in mM) 134 NaCl, 6 KCl, 1 MgCl2, 0.1 CaCl2, 10 Glucose and 10 

HEPES (pH 7.4). All electrophysiology experiments were conducted in the presence of the large 

conductance Ca2+ activated K+ (BK) channel blocker paxilline (1µM). Micropipettes (5–10 MΩ) 

were filled with an internal pipette solution (in mM) 87 K+ aspartate, 20 KCl, 1 CaCl2, 1 MgCl2, 
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10 HEPES, 10 EGTA, and 25 KOH (pH 7.2). Outward K+ currents were elicited by a series of 10 

mV depolarizing steps to +50 mV from a holding potential of -70 mV and were recorded using 

an Axon Instruments Axopatch 200B amplifier and Clampex software (20) (Figure 1B). 

Measurements were obtained before and after 10 minutes of exposure to either bath solution 

(control), 1µM 1,2-dioctanoyl-sn-glycerol (DOG) in bath solution, or 1µM chelerythrine in bath 

solution.  To normalize for changes in cell size 

between myocytes, whole cell current density was 

calculated by dividing membrane current by cell 

capacitance for each cell. 

Drugs. DOG was purchased from Caymen 

Chemical (Ann Arbor, MI). All other compounds 

were purchased from Sigma (St. Louis, MO). 

Statistics. All data were analyzed using 

Student’s t-test (paired for drug treatments, 

unpaired for comparison between SAH and 

control).  Analysis was performed using pClamp 

Clampfit electrophysiology software and Origin 

6.0 statistical software.  Statistical significance 

was considered at the level of P < 0.05.  

 

RESULTS 

 KV current is significantly decreased in SAH parenchymal myocytes. Initial experiments 

were designed to compare KV currents in control and SAH parenchymal myocytes. Using the 

Figure 1. The whole cell patch clamp technique 
was used to measure KV current. A: 
Representative photograph of a parenchymal 
myocyte from SAH rat with patch clamp 
pipette B: Patch clamp protocol: Outward K+ 
currents were elicited via 10 mV depolarizing 
steps from to +50 mV from a holding potential 
of -70 mV.   Protocol was repeated 13 times 
with a 10 second lag period, with each 
successive cycle having a depolarization of 10 
mV higher than the previous. 
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whole cell patch clamp technique, outward K+ 

currents were elicited by a series of 10 mV 

depolarization steps from -70 mV to +50 mV. To 

minimize contamination from other outward 

potassium channels, all experiments were conducted 

with 1 µM paxilline in the bath solution, which 

blocks BK channels (21). Significantly lower 

current density was observed in SAH myocytes as 

compared to controls (Figure 2). These data are 

consistent with prior data suggesting KV current in 

SAH myocytes is suppressed as compared to 

control (14).  

  

KV currents do not significantly decrease over a 

period of 10 minutes. Prior to drug treatment, we 

performed time control experiments. Since both 

DOG and chelerythrine require a 10-minute 

incubation, time control experiments were designed to determine if KV currents decreased over a 

period of 10 minutes. Control and SAH myocytes were treated with bath solution alone. 

Recordings were obtained before and after a 10-minute incubation in bath solution. KV currents 

did not significantly decrease over the 10 minutes in either control or SAH myocytes (Figure 3).  

These data establish that in the absence of drug treatment, KV currents do not significantly 

change over the period of time in which myocytes were incubated with drugs. 
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Figure 2. Whole cell KV currents in 
parenchymal arteriolar myocytes from control 
and SAH animals. A: Representative traces of 
K+ currents in control and SAH myocytes. B: 
Summary of current density in SAH and 
control myocytes, currents elicited by a series 
of 10 mV depolarizing steps to +50 mV from 
a holding potential of -70 mV. n=8 cells from 
7 animals for control, 6 cells from 3 animals 
for SAH. * P < 0.05, ** P < 0.01 vs. control. 
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PKC activator 1,2-dioctanoyl-sn-glycerol (DOG) suppresses KV currents in control but not 

SAH myocytes. To examine the impact of PKC activation on KV currents, we examined the effect 

of DOG on KV currents in SAH and control parenchymal myocytes. DOG is an analog of an 

endogenous PKC activator diacylgylcerol and a competitive agonist of conventional and novel 

PKC isoforms (9, 15). Previous work by others has indicated that active PKC suppresses KV 

currents in vascular smooth muscle (1, 11).  In SAH parenchymal myocytes, we hypothesized 

DOG would not cause further KV current suppression if PKC was already active. In control 

myocytes, addition of DOG could activate PKC leading to a decrease in KV currents.  DOG 

caused a significant decrease in KV currents in control parenchymal myocytes, from 35.4 ± 2.4 to 

25.0 ± 0.98 pA/pF at +50 mV (Figure 4A, 4B). This suppression of KV currents by DOG is 
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Figure 3: KV currents do not decrease significantly over a period of 10 
minutes. A: Traces of outward K+ current in control and SAH myocytes 
before flow of bath solution and after 10 minutes. B: Summary data of 
current densities (at +50 mV) for time control experiments. KV currents do 
not significantly diminish after 10 minutes. Control: n=5 cells from 5 
animals. SAH: n=4 cells from 4 animals. 
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consistent with data reported by Koide et al in rabbit cerebral artery myocytes (20). In SAH 

myocytes, DOG did not cause a significant decrease in KV current density (18.6 ± 1.4 to 16.0 ± 

0.5 pA/pF at +50 mV). These data are consistent with our hypothesis and indicate that PKC may 

already be maximally active in myocytes from SAH parenchymal arterioles such that DOG is 

unable to further activate PKC. In control myocytes, PKC is not maximally active, so addition of 

DOG is able to elicit a decrease in KV current.  

 PKC inhibitor chelerythrine does not significantly alter KV current in control or SAH 

myocytes. To determine the effect of inhibiting PKC, we then applied chelerythrine to control 

and SAH myocytes. Chelerythrine is a selective, competitive inhibitor of PKC (12).  Multipe 

studies have demonstrated that the suppression of KV currents by DOG was abolished when 

vessels were treated in concert with chelerythrine (1). We hypothesized that chelerythrine would 

have no effect on KV current in control myocytes, whereas in SAH cells it might rescue KV 

current such that it increased after 10 minutes.  An alternative hypothesis suggested chelerythrine 

would not increase KV current in SAH animals, because as the channel or downstream effector 

from PKC is already phosphorylated, thus blocking PKC at this point would have no effect.  We 

applied chelerythrine to control and SAH cells.  Chelerythrine did not significantly alter KV 

currents in either control or SAH myocytes (Figure 4C, 4D).  These data suggest inhibiting PKC 

in isolated smooth muscle cells does not alter KV channels, either because PKC was not active or 

because the pathway to inhibiting KV channels had already been initiated. 

 

DISCUSSION 

This study used the whole cell configuration of the patch clamp technique to investigate the 

effect of activating and inhibiting PKC on KV currents in control and SAH myocytes.  Our 
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results indicate basal KV currents are suppressed in SAH parenchymal myocytes as compared to 

control.  Time control studies demonstrate KV current density does not significantly decrease in 

control of SAH myocytes, which allows for meaningful data to be obtained from drug treatment 

studies.   We report PKC activation significantly suppresses KV currents in control but not SAH 

parenchymal myocytes.  The PKC activator DOG suppressed KV current in control myocytes but 
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Figure 4: PKC activator DOG induced KV current suppression in parenchymal arteriolar myocytes from control but 
not SAH animals and PKC inhibitor chelerythrine did not significantly change current in control or SAH myocytes.  
A: Traces of outward K+ currents in control and SAH myocytes before and after addition of PKC activator, DOG (1 
µM, 10 min). B: Summary data of current densities (at + 50 mV) before and after DOG treatment.  DOG decreased 
currents in control, but not SAH, myocytes. Control: n=5 cells from 5 animals; SAH: n=4 cells from 3 animals. C. 
Traces of outward K+ currents in control and SAH myocytes before and after adittion of PKC inhibitor chelerythrine 
(1µM, 10 min).  D. Summary data of current densities (at +50mV) before and after chelerythrine treatment.  
Chelerythrine did not significantly chance outward K+ currents in either control or SAH myocytes.  Control: n=4 
cells from 4 animals; SAH: n=5 cells from 3 animals. * P<0.05 vs. before DOG, NS: not significant, Chel: 
chelerythrine. 
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not in SAH myocytes.  These data indicate that PKC may be maximally active following SAH.  

Figure 5 depicts a proposed signaling pathway from PKC activation to myocyte contraction.   

 The PKC inhibitor chelerythrine did not significantly change KV current in either control or 

SAH myocytes. This may be the case because PKC had already phosphorylated the channel or a 

regulatory unit, so inhibiting PKC would not prevent futher phosphorylation but would not 

remove the phosphate already added.  To clarify this question, electrophysiological experiments 

will need to be conducted in the presence of a phosphatase to cleave phosphate from the channel 

or regulatory unit. Cleavage of the phosphate from the effector PKC targeted may relieve the 

suppression of KV currents.  As phosphates are peptides and are not easily transported across the 

cell membrane, application would need to proceed through the pipette.  Phosphatase would be 

added to the pipette solution, and when the cell membrane is ruptured upon obtaining a  pipette 

seal and applying suction, the phosphatase in the pipette solution would be able to diffuse into 

the cell and act on its targets.  PKC inhibitors could also be applied in vivo following injections 
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Figure 5. Proposed mechanism of SAH-
induced vasoconstriction involving PKC 
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suppression of KV channels promoting 
parenchymal arteriolar myocyte membrane 
potential depolarization.  Membrane 
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activity and increased intracellular calcium 
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intracellular Ca2+ promotes contraction and 
vasoconstriction. Image of aneurysm 
rupture in upper left from Vascular Care 
New York (31) 
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of blood into the cisterna magna.  This application could potentially prevent suppression of KV 

channels by PKC, thus myocytes from chelerythrine treated animals would be expected to be 

greater than animals without treatment. 

The mechanism by which KV suppression promotes smooth muscle contraction.  Active PKC 

mediated suppression of KV channels would lead to membrane depolarization and subsequent 

influx of Ca2+ through VDCCs.  Normally, KV channels are activated by membrane 

depolarization.  Upon activation, KV channels would facilitate outward K+ flow across the 

membrane, effectively repolarizing the cell (27).  If KV channels are blocked, this repolarization 

would not occur leading to activation of VDCCs, which facilitate the flow of Ca2+ into the cell 

(26).   

Arterial smooth muscle contraction is primarily regulated through VDCCs.  Increased 

cytosolic Ca2+ concentrations stimulate muscle contraction.  Smooth muscle cells tightly regulate 

their free Ca2+ concentrations.  Cytosolic free Ca2+ concentration is in the sub-micromolar scale 

as opposed to total intracellular, which includes Ca2+, contained in the sarcoplasmic reticulum, 

and extracellular concentrations, both of which are in the millimolar scale (13). Influx of Ca2+ 

through VDCCs increases the free Ca2+ concentration, permitting Ca2+ to bind calmodulin.  The 

calmodulin-calcium complex can activate myosin light chain kinase, which in turns 

phosphorylates myosin light chain promoting contraction (16).  

 Mechanism of PKC mediated KV channel suppression.  Activation of PKC following SAH 

would suppress KV channels by an as of yet undetermined mechanism.  Aiello et al proposed 

three possible mechanisms of KV channel suppression via PKC.  These mechanisms include PKC 

catalyzed phosphorylation of the KV channel, phosphorylation of a regulatory subunit that would 

then inactive the channel, and phosphorylation of another kinase, triggering a kinase cascade that 
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results in phosphorylation of the channel or regulatory subunit (1).  One method to determine if 

PKC directly phosphorylates KV channels may involve isolation of the channel in both control 

and SAH myocytes followed by characterization of mass to charge ratio using mass 

spectrometry.  If a phosphate is added to KV channels by PKC following SAH, mass 

spectrometry would detect the additional mass and negative charge covalently linked to the 

channel as compared to channels from control myocytes.  We report inhibition of PKC does not 

change KV current in SAH myocytes, which may be due to the target of PKC already being 

phosphorylated.   

PKC isotype involved in KV suppression following SAH.  There are three large families of 

PKC isoforms: 1) conventional, Ca2+ dependent isoforms including PKCα and PKCß, 2) novel, 

Ca2+ independent isoforms including PKCδ and PKCε (among others), and 3) atypical PKC 

isoforms including PKCζ (41).  Atypical PKC is not activated by DAG and is not Ca2+ 

dependent.  Different isoforms are expresed in vascular smooth muscle, including PKCα, PKCß, 

PKCγ, PKCδ, and PKCε (18).  There are some atypical isoforms expressed as well, but since our 

data demonstrates DOG treatment activated PKC leading to KV suppression, it is unlikely the 

PKC subtype involved is a member of the atypical PKC family.  Evidence of angiotensin II and 

endothelin-1 (ET-1) mediated PKC suppression of KV current suggests different PKC isozymes 

may be responsible for KV suppression in arterial smooth muscle (39).  Rainbow et al. reported 

angiotensin II inhibits KV channels through PKCε while ET-1 inhibits KV channels through 

PKCα.  It has been reported that following SAH PKCα and PKCδ are active in arterial smooth 

muscle (28, 30, 38).  Other evidence demonstrates PKCδ translocates to the membrane before 

PKCα, suggesting PKCδ is involved in establishing PKC mediated vasospasm while PKCα 

works in maintaining that vasospasm over a prolonged period of time (28).  These data suggest 
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PKCα may be controlling prolonged KV current suppression following SAH, but further research 

is required to test this hypothesis.  PKCδ was not found to be involved in KV suppression by 

Rainbow et al, but as it is active following SAH, further study should investigate the potential 

role of PKCδ in KV channel suppression following SAH. 

Mechanism of PKC activation following SAH.  The mechanism by which PKC is activated 

following SAH is most likely two fold, as both PKCα and PKCδ are activated.  Rho kinase has 

been reported to be active following SAH and contributing to vasospasm (45).   In addition to 

phosphorylating myosin light chain kinase directly, there is evidence Rho contributes to the 

activation of PKCδ (34).  However, the role of PKCδ in KV suppression is not clear after SAH. 

Following SAH, oxyhemoglobin triggers the release of ET-1 from astrocytes, neurons, and 

pituitary cells as well as from endothelial and smooth muscle cells into the cerebrospinal fluid 

(36).  However, Pluta et al suggest that ET-1 is not responsible for initial vasospasm, rather it is a 

result of ischemia stemming from that vasospasm (36).  PKCα is not active immediately after 

exposure to oxyhemoglobin, which suggests the activation of PKCα may also be a result of 

ischemia following SAH, rather than from oxyhemoglobin itself. If this is the case, PKCα 

functions in a feed-forward system in which SAH induces vasospasm through a mechanism 

independent of PKCα resulting in cerebral ischemia, production of ET-1, and activation of 

PKCα, which in turn functions to suppress KV channels and maintain SAH.  A time course 

experiment investigating the role of PKC in SAH induced KV suppression could provide 

additional information of the onset of PKC mediated KV suppression.  Potential time points of 

interest may before the second injection of blood into the cisterna magna, immediately after this 

injection, day four (as was used in the experiments reported here), and day seven. 
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KV channel subtype involved in PKC mediated suppression after SAH.  Previous work has 

suggested that at least two independent mechanisms contribute to suppression of KV current 

following SAH.  The HB-EGF/EGFR pathway characterized by Koide et al appears to be 

specific to KV1.2 and KV1.5 channels and is independent of the PKC mediated pathway (20).  

Activation of this pathway in rabbit cerebral myocytes by exposure to oxyhemoglobin pathway 

suppressed KV current in control myocytes but this suppression did not match that observed in 

SAH myocytes.  Treatment with DOG in addition to oxyhemoglobin further suppressed KV 

current.  This suggests that DOG is involved in a pathway independent of the HB-EGF/EGFR 

pathway and indicate additional KV channel subtypes may be suppressed following SAH in 

addition to KV1.2 and KV1.5.  If the PKC pathway solely targeted KV1.2 and KV1.5 channels, 

addition of DOG would not have suppressed KV currents in the presence of EGF.  An additional 

experiment in this project would be to apply DOG to control parenchymal myocytes in the 

presence of correolide, a specific inhibitor KV1 family channel inhibitor (10). We would predict 

that DOG would further suppress KV currents in the presence of correolide as it is working 

through a separate pathway. 

A third subtype of KV channel, KV2.1, is expressed in arterial smooth muscle and has been 

shown to be suppressed in a PKC dependent fashion following PKC activation by angiotensin II 

(2). Based on these data and on our own observations, we propose KV2.1 as a possible end target 

for the PKC pathway following SAH. An experimental plan involving electrophysiological 

experiments with the use of KV subtype specific inhibitors could provide evidence as to the 

specific subtype.  Correolide and stromatoxin, a specific inhibitor of KV2 family channels (40) 

could be used in such an experimental series.  If KV2.1 is suppressed by PKC activation, then 

treatment with DOG after stromatoxin would result in no further decrease in total KV current. If 



SAH	
  Activates	
  PKC	
  Leading	
  to	
  KV	
  Channel	
  Suppression	
  

	
  

17	
  

DOG was treated prior to stromatoxin, addition of stromatoxin should not then further decrease 

KV currents as DOG has already initiated the inhibition of the stromatoxin sensitive, KV2.1 

channel.  If PKC is suppressing KV2.1, DOG treatment after correolide would suppress total KV 

current further. 

Implications of PKC mediated suppression of KV channels in parenchymal arteriole myocytes 

following SAH. The PKC mediated pathway of KV suppression following SAH is important in 

the severe, prolonged vasospasm responsible for high morbidity and mortality.  In parenchymal 

arterioles, this vasospasm is especially devastating, as the cerebral parenchyma is not supplied by 

other blood vessels.  Characterization of PKC activity following SAH in parenchymal arterioles 

may provide a therapeutic target. A specific PKC inhibitor for the isoform responsible for KV 

channel suppression could potentially relieve KV inhibition and subsequent vasospasm.   

PKC Activity in Intact Arteriole.  In follow up to the data reported here, we plan to perform 

an assay for PKC activity in intact parenchymal arterioles. We have been storing intact 

parenchymal arterioles by removing them as described for electrophysiology experiments and 

storing at -80˚C.  For the PKC assay, we will homogenize these arterioles in a a lysis buffer 

containing (in mM) 10 MOPS, 50 ß-glyceraldehyde phosphate, 50 sodium fluoride, 1 sodium 

orthovanadate, 5 EGTA, 2 EDTA, 1 diothiothreitol, 1 benzamidine, 1 PMSF, 10µg/mL 

leupeptin, 10µg/mL aprotinin, and 1% IGEPAL CA 630.  As active PKC translocates to the 

membrane, membrane fractions will be obtained by multiple rounds of centrifugation.  PKC 

activity will be determined using an Enzo Life Sciences kit.  Protein concentrations in samples 

used in the PKC assay will be measured using the Bradford assay, which is a spectroscopic assay 

of protein concentration in a solution, with bovine serum albumin as the standard. 
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PKC activity has not been characterized in parenchymal arterioles following SAH.  Given the 

data reported here, and based on previous PKC assay experiments in pial arteries (30), we 

hypothesize PKC is active in parenchymal arterioles from SAH rats four days following the 

initial injection of blood into the cisterna magna.  This study would provide further data PKC is 

active in the arteriole.  Coupled with electrophysiology experiments showing PKC is active in 

smooth muscle, these data would provide a strong case for active PKC playing a role in 

vasospasm following SAH. 

In summary, here we provide evidence of PKC activation in parenchymal arterioles 

following SAH leading to KV current suppression.  As KV suppression contributes to vasospasm 

and subsequent neurological deficits following SAH, these data may contribute to future 

therapeutic approaches.  Future research into the mechanism by which PKC is activated 

following SAH and how this activation suppresses specific KV subtypes will elaborate on this 

contribution. 
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