REAL AND COMPLEX VARIABLES PH.D. QUALIFYING EXAM

September 17, 2015

Three Hours

A passing paper consists of a total of six problems done completely correctly, or five problems done correctly with substantial progress on two others. At least three problems from each of Section A (Real Analysis) and Section B (Complex Analysis) must count toward the passing criteria, and two of these from each section must be completely correct.

Section A. Real Analysis

- Let (M, d) be a metric space, and let {x_n}[∞]_{n=1} and {y_n}[∞]_{n=1} be Cauchy sequences in M. Prove that the sequence of real numbers {d(x_n, y_n)}[∞]_{n=1} converges in ℝ. (Do not assume M is complete.)
- 2. Let $f_n : \mathbb{R} \to \mathbb{R}$ be a sequence of functions that converges uniformly to a function $f : \mathbb{R} \to \mathbb{R}$. Prove that if the sequence of real numbers $\{a_n\}_{n=1}^{\infty}$ converges to a and f is continuous at a, then the sequence $\{f_n(a_n)\}_{n=1}^{\infty}$ converges to f(a).
- 3. For each real number t > 0 let $F(t) = \int_0^\infty \frac{e^{-xt}}{1+x^2} dx$. (You may treat the integrals as either Riemann or Lebesgue whichever you prefer.)
 - (a) Show that F(t) is defined (i.e., converges) for every t > 0.
 - (b) Prove that F is continuous on $(0, \infty)$.
- 4. Let $\overline{\mu}$ be an outer measure on a set X. Show that a subset E of X is $\overline{\mu}$ -measurable if and only if for every natural number n there is a measurable set E_n with $E_n \subseteq E$ and $\overline{\mu}(E E_n) < \frac{1}{n}$.
- 5. Let (X, \mathcal{M}, μ) be a measure space. We say that $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{M}$ almost fills up X if, for all $A \in \mathcal{M}$ with finite measure,

$$\lim_{n \to \infty} \mu(A \setminus E_n) = 0.$$

Show that $\{E_n\}_1^\infty \subseteq \mathcal{M}$ almost fills up X if and only if for all $f \in L^1(X, \mathcal{M}, \mu), f\chi_{E_n} \to f$ in $L^1(X)$.

6. Find, with justification, the value of

$$\lim_{n \to \infty} \int_1^\infty \frac{n \sin(x^2/n)}{x^4} \, dx.$$

- 7. Let $F : \mathbb{R}^4 \to \mathbb{R}^2$ by $F(x, y, u, v) = (x^3 + vx + y, uy + v^3 x)$.
 - (a) Find the Jacobian matrix of F at an arbitrary point in the domain.
 - (b) At what points satisfying F(x, y, u, v) = (0, 0) does the Implicit Function Theorem allow you to solve for u and v in terms of x and y?
 - (c) At any one of the points in part (a) of your choosing compute $\partial u/\partial x$.

Section B. Complex Analysis

- 8. Identify explicitly the real and imaginary parts of the function $f(z) = z \cos z$, and verify any one of the Cauchy-Riemann equations for f at an arbitrary point z.
- 9. Use the method of residues to find the value of the integral $\int_0^\infty \frac{x^2}{x^6+1} dx$.
- 10. Find the Laurent series of the form $\sum_{n=-\infty}^{\infty} c_n z^n$ for $f(z) = \frac{33}{(2z-1)(z+5)}$ that converges in an annulus containing the point z = -3i, and state precisely where this Laurent series converges.
- 11. Use Rouché's Theorem to determine the number of zeros of $f(z) = 2z^5 6z^2 + z + 1$ in the annulus $1 \le |z| \le 2$.
- 12. Use any method to find the value of $\int_C \tan z \, dz$, where C is the circle of radius 8 centered at the origin, oriented counterclockwise.
- 13. Describe explicitly all entire functions f(z) that satisfy the following inequality:

$$|f(z)| \le |e^z \sin z|,$$
 for all $z \in \mathbb{C}$.

14. Let $D = \{z \in \mathbb{C} \mid |z| < 1\}$ be the unit disk in the complex plane, and let $f_n : D \to D$ be a sequence of analytic functions that converges pointwise to $f : D \to \mathbb{C}$. Prove that f is analytic. (You may quote results from both real and complex analysis.)