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January 31, 2009

A passing paper consists of 7 problems solved completely, or 6 solved completely with substantial
progress on 2 others.

1. Let (X, d) be a metric space. A set E ⊆ X is called discrete if there is δ > 0 such that, for all
x and y in E with x 6= y we have d(x, y) > δ. Show that a discrete set is necessarily closed.
(Use any standard definition of “closed set” in a metric space.)

Solution. Let {xn} ⊂ E be a sequence and xn → p. The sequence {xn} is Cauchy; E’s discreteness
forces it to be eventually constant. Therefore xn = p for all sufficiently large n, and p ∈ E.

2. Suppose that f : (0, 1) → R is differentiable on all of (0, 1) and f ′(1/4) < 0 < f ′(3/4). Show
that there is a c ∈ (1/4, 3/4) such that f ′(c) = 0.

Solution. Since f is continuous on [1/4, 3/4], it attains a minimum at some c ∈ [1/4, 3/4]. Having
f ′(1/4) < 0 implies that f(x) < f(1/4) for some x > 1/4 and close to 1/4; therefore c 6= 1/4.
Having f ′(3/4) > 0 implies that f(x) < f(3/4) for some x < 3/4 and close to 3/4; therefore
c 6= 3/4. Therefore c ∈ (1/4, 3/4) and, since c is a minimum, f ′(c) = 0.

3. Suppose that f : R → R is differentiable on all of R and lim
x→∞

f ′(x) = A, where A is a real

number. Show that lim
x→∞

f(x)
x

exists and equals A. [Hint: Show this for A = 0 first.]

Solution. Following the hint, first treat the case of A = 0. Let ε > 0, and let a > 0 be so large that
t > a implies |f ′(t)| < ε. If x > a then, by the Mean Value Theorem, there is a point a < cx < x
such that

f(x) = f(a) + f ′(cx)(x− a);

therefore
f(x)

x
=

f(a)
x

+ f ′(cx)(1− (a/x)) ≡ (I) + (II).

Term (I) → 0 as x → ∞ and |(II)| < ε. Therefore |f(x)/x| < 2ε when x is large enough. That
proves the A = 0 case. For general A, set g(x) = f(x)−Ax. Then g′(x) → 0, implying

g(x)/x =
f(x)

x
−A → 0

as x →∞.

4. Let f : [1,∞) → [0,∞) be a non-increasing function. Prove that

∫ ∞

1

f(x) dx < ∞ if and only if
∞∑

k=0

2kf(2k) < ∞.

Solution. For every k = 0, 1, 2, . . . ,

f(2k)(2k+1 − 2k) ≥
∫ 2k+1

2k

f(x) dx ≥ f(2k+1)(2k+1 − 2k).
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But 2k+1 − 2k = 2k. Therefore

∞∑

k=0

2kf(2k) ≥
∫ ∞

1

f(x) dx ≥
∞∑

k=0

2kf(2k+1).

But the sum on the far right equals

(1/2)

( ∞∑

k=1

2kf(2k)

)
.

5. Consider the two surfaces in R3,

Σ1 = {(x, y, z) : z = xy}
Σ2 = {(x, y, z) : x2 + y2 + z2 = 1},

and let Γ ≡ Σ1 ∩Σ2. For almost all of the points (x̃, ỹ, z̃) ∈ Γ, the Implicit Function Theorem
guarantees the existence of a differentiable function g = (g1, g2), defined on some open neigh-
borhood U of z̃ and mapping into R2, such that (g1(z), g2(z), z) ∈ Γ for all z ∈ U . But there
are FOUR points (x̃, ỹ, z̃) where the IFT does not guarantee the existence of such a g. Find
the points, with justification.

Solution. The curve Γ is the simultaneous zero set of φ1(x, y, z) = xy − z and φ2(x, y, z) =
x2 + y2 + z2 − 1. The appropriate Jacobian matrix has determinant 2(y2 − x2). The “bad” points
are where |x| = |y| ≡ α. Setting |z| = |x||y| = α2, and plugging this into x2 + y2 + z2 − 1 = 0, we
get α4 + 2α2 − 1 = 0, implying α2 = −1 +

√
2 (we take only the positive root from the quadratic

formula). The points are given by x = ±
√
−1 +

√
2, y = ±

√
−1 +

√
2 (independent plus or

minus), and z = xy.

6. Let (X,M, µ) be a measure space, where M is a σ-algebra, and let g : X → [0,∞] be a
non-negative measurable function. For each E ∈M define

ν(E) =
∫

g χE dµ.

(a) Show that ν(E) defines a measure on M. (You may quote without proof any standard
theorems from measure theory in your argument.)

(b) In a similar fashion, show that if f : X → [0,∞] is any non-negative measurable function,
then

∫
f dν =

∫
f g dµ.
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Solution. a) The only nontrivial part is countable additivity. Let {Ek} ⊂ M be disjoint. Then:

ν(∪Ek) =
∫

g χ∪Ek
dµ

=
∫

g

(∑

k

χEk

)
dµ

= lim
n→∞

∫
g

(
n∑
1

χEk

)
dµ (1)

= lim
n→∞

n∑
1

ν(Ek)

=
∞∑
1

ν(Ek),

where (1) follows from the Monotone Convergence Theorem.
b) If f = χE the result follows from the definition of ν. By linearity it is true for any non-negative
simple function. If f is any non-negative measurable function, there is a sequence of non-negative
simple functions 0 ≤ φ1 ≤ φ2 ≤ φ3 ≤ · · · such that φn → f pointwise. By Monotone Convergence,

∫
f dν = lim

n→∞

∫
φn dν = lim

n→∞

∫
φn g dµ =

∫
f g dµ.

7. Suppose that (X,M, µ) is a finite measure space, and {Ek} is a sequence of sets from M such
that µ(Ek) > 1/100 for all k. Let F be the set of points x ∈ X which belong to infinitely
many of the sets Ek.

(a) Show that F ∈M, i.e., F is a measurable set.

(b) Prove that µ(F ) ≥ 1/100.

(c) Give an example to show that conclusion (b) can fail if µ(X) = ∞.

Solution. a) A point x belongs to F if and only if, for all j, there is a k ≥ j such that x ∈ Ek.
Therefore F = ∩j∪k≥j Ek, which belongs to M. b) Put Dj = ∪k≥jEk. The sets Dj are decreasing,
their intersection is F , and µ(D1) ≤ µ(X) < ∞. Therefore µ(F ) = limj→∞Dj . But, for all j,
µ(Dj) ≥ µ(Ej) > 1/100. c) With µ = Lebesgue measure on R, let Ej be the interval (j, j + 1).

8. Find the value of

lim
n→∞

∫ ∞

0

(
n∑

k=0

(−1)kx2k

(2k)!

)
e−2x dx,

and justify your assertion by quoting appropriate facts from calculus and one or more limit
theorems from measure theory.

Solution. The absolute values of all of the partial sums of the power series are pointwise bounded
by ex (look at its power series); therefore the integrands are all bounded by exe−2x = e−x, which
is integrable on [0,∞). The power series conveges pointwise to cos x. Therefore, by the Dominated
Convergence Theorem, the limit equals

∫ ∞

0

cosx e−2x dx.
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We find the integral by doing 2 integrations by parts; its value is 2/5.

9. Let (X, || ||) be a normed linear space.

(a) State what it means for (X, || ||) to be a Banach space, and give an example, with details,
of a normed linear space that is not a Banach space.

(b) Let {xk}∞k=1 be a sequence in X and let

SN =
N∑

k=1

xk

be the usual N th partial sum of the series
∞∑

k=1

xk. The series is said to be summable if

the sequence {SN}∞N=1 of partial sums converges to an element of X. The series is called

absolutely summable if
∞∑

k=1

||xk || < ∞.

Prove that (X, || ||) is a Banach space if and only if every absolutely summable series
is summable. (You may use without proof the fact that if a Cauchy sequence has a
subsequence that converges to L, then the entire sequence also converges to L.)

Solution. a) A Banach space is a NLS that is complete with respect to the norm-induced metric. For
the example (one possibility), first let Y = `∞, the bounded sequences on N with the supremunm
norm. Let X ⊂ Y be the finite (eventually 0) sequences on N, with the same norm. Consider the
sequence {xn} from X defined by:

xn = {1, 1/2, 1/3, 1/4, . . . , 1/n, 0, 0, 0, . . . }.
The sequence {xn} is Cauchy (with respect to the norm) because it has a limit p in Y . But that
p does not belong to X. Therefore {xn} can have no limit in X, because limits are unique.

b) Suppose (X, || ||) is a Banach space, and
∞∑

k=1

||xk || < ∞. Let N be so large that
∑

k>N

||xk || < ε.

Recall that Sn =
∑n

1 xk. If N ≤ m < n then ‖Sm − Sn‖ ≤
∑n

m+1 ‖xk‖ < ε. Therefore {Sn} is
Cauchy and the series is summable. Conversely, suppose that every absolutely summable series is
summable, and that {xn} ⊂ X is Cauchy. Let n0 be the least N such that if m and n are ≥ N
then ‖xn − xm‖ < 1. Then, having chosen n0 < n1 < n2 < · · · < np, let np+1 be the least N > np

such that if if m and n are ≥ N then ‖xn − xm‖ < 2−p−1. The series

xn0 + (xn1 − xn0) + (xn2 − xn1) + (xn3 − xn2) + · · · ≡ η0 + η1 + η2 + · · ·
is absolutely summable because ‖ηk‖ ≤ 2−k for k > 0. Therefore it is summable. Call its sum y.
For any p ≥ 0 (telescoping series),

p∑

k=0

ηk = xnp
.

Therefore xnp
→ y as p →∞ and, because {xn} is Cauchy, the entire sequence converges to y.

10. Let φ ∈ L∞(R) (the measure on R is the usual Lebesgue measure). Show that

lim
n→∞

(∫

R

|φ(x)|n
1 + x2

dx

)1/n
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exists and equals ‖φ‖∞.

Solution. If ‖φ‖∞ = 0 the problem is trivial; therefore we assume that ‖φ‖∞ > 0. For all n,

(∫

R

|φ(x)|n
1 + x2

dx

)1/n

≤ ‖φ‖∞π1/n → ‖φ‖∞ (2)

as n → ∞. On the other hand, for all 0 < ε < ‖φ‖∞ there is a Lebesgue measurable set E ⊂ R
with positive measure such that |φ(x)| > ‖φ‖∞ − ε everwhere on E. Therefore, for all n,

∫

R

|φ(x)|n
1 + x2

dx ≥ (‖φ‖∞ − ε)n

∫

E

(1 + x2)−1 dx.

But, because (1 + x2)−1 > 0 everywhere, the integral

∫

E

(1 + x2)−1 dx

is positive. Call its value δ. Therefore, for all n,

(∫

R

|φ(x)|n
1 + x2

dx

)1/n

≥ (‖φ‖∞ − ε)δ1/n → ‖φ‖∞ − ε. (3)

Inequality (2) implies that

lim sup
n→∞

(∫

R

|φ(x)|n
1 + x2

dx

)1/n

≤ ‖φ‖∞

and inequality (3) implies that, for all ε > 0,

lim inf
n→∞

(∫

R

|φ(x)|n
1 + x2

dx

)1/n

≥ ‖φ‖∞ − ε,

which implies that the limit inferior is ≥ ‖φ‖∞.


