Pasture ecology and livestock parasite management

- The pasture ecosystem
- Parasite management
- IPM project
- Cattle lice project

The pasture ecosystem

The Dung Ecosystem

Nuisance

- Pest flies
- Parasitic

nematodes

Beneficial

- Coprophagou
 - S

Predatory

Ecosystem

- engineers
- Earthworms
- Dung heetles

The University of Vermont

Predatory beetles and flies

Coprophagous beetles and flies

Dung beetles

- Approx. 90 species
 in North America
- In decline globally

Dung beetles in the Northeast

Dung beetles in the Northeast

Pasture ecosystem services

- Nutrients
- Soil organic matter
- Biodiversity

- Dung decomposition
- Nutrient cycling
- Pasture fertility
- Pest fly and parasite control
- Prey items

- The pasture ecosystem
- Parasite management
- IPM project
- Cattle lice project

Pests and parasites

Veterinary parasiticides 1. Development of resistance 2. Environmental impacts 3. Organic production restrictions

SPOT ON

- The pasture ecosystem
- Parasite management
- IPM project
- Cattle lice project

Diagnostics

Product choice and rotation

Targeted Selective Treatment

Grazing

Beneficial insects Natural enemies / biological control Traps

Botanical treatments

Natural immunity

Natural enemies / biological control

Integrated Parasite Management Grazing strategies

Diagnostics

Beneficial insects

Botanical treatments

Methods

29 grazing dairy farms in VT and NY

Grazing strategies:

- Continuous
- Rotational
- 'MIG'

Treatments:

- Chemical parasiticides
- Botanical (essential oils)
- Natural enemies biological control

Measured

Beneficial insects

- Dung beetles
- Flies
- Hymenoptera

Bryony.sands@uvm.edu

Internal parasites

Pest flies

Results

Internal parasites

For farms not using chemical parasiticides, grazing strategies effectively controlled internal parasites

Synthetic pyrethroids most effective, followed by parasitoid Influenced by Stating strategy

Organic farms had significantly higher insect species richness

Driven by the effects of synthetic pyrethroid insecticides

Results Soil Health

Farms grazing MIG had significantly higher overall soil health score

- Predicted soil protein
- Respiration
- Active carbon
- Bulk density

Farms treating for pests and parasites had higher soil health score

• More to learn about relationship between above-ground pasture biodiversity and the soil health indicators

Take-home

messages

For organic producers / those not wishing to use chemical parasiticides:

- Grazing strategies can effectively control internal parasites of livestock
- Alternative treatments can suppress pest fly abundance parasitoid wasps (fly predators) most effective
- Grazing strategies can improve soil health outcomes Livestock parasiticide treatments can reduce insect biodiversity on pastures

More research needed on relationship between above-ground diversity outcomes and soil health outcomes

- The pasture ecosystem
- Parasite management
- IPM project
- Cattle lice project

Cattle lice

Cattle lice

Adult

- Populations explode in winter weather
- Transmission increases during winter housing
- Limited treatment options for organic producers

Essential oils

- Botanical insecticides
- Plant secondary metabolites
- Deter insect herbivory
- Usually neurotoxic effects on insects.

- 5% Lavender
- 2.5 % Clove
- 0.2% Thyme
- In mineral oil base

Cattle lice

- 1 liter applied to back line and brushed in
- Two applications two weeks apart

Trial 1 results

Trial 2 results

Take-home

messages

- Essential oil-based formulations can effectively prevent and treat winter lice of cattle
- Application method improvements to save time and labour....
 - Calves bigger issue

Northeastern IPM Center Northeast SARE UVM Extension Ed, Isabelle, Eva PRF Heather Darby Julia Gorenstein Lauren Giroux John Bruce

Compound	Environmental	Environmental	Bio-	Mobility	TOTAL	CONCERN
	Toxicity	Persistence	accumulative			
Clorsulon (benzenesulphonamide – flukicide)	1	3	1	3	8	LOW
Closantel (salicylanilide – flukicide)	2	2	1	1	6	LOW
Deltamethrin	4	2	1	1	8	MED
Diclazuril (<u>triazinone</u> – antiprotozoal)	1	4	1	2	8	LOW
Doramectin	5	5	2	1	13	HIGH
Eprinomectin	4	4	2	1	11	HIGH
lvermectin	5	4	2	1	13	HIGH
Levamisole Hydrochloride	1	2	1	1	5	LOW
Moxidectin	3	4	2	1	10	MED
Nitroxynil (flukicide)	1	1	1	1	4	LOW
Triclabendazole	3	4	1	1	9	MED

