

Overview

Introduction

- Materials & Methods
- Results & Discussion
- Conclusions & Moving
 Forward
- Questions

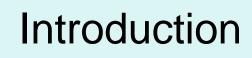
Introduction

 Lower production costs¹
 Improved animal health²
 Better quality of life – animals and producers^{3,4}

- ¹ Ford & Musser, 1998
- ² Washburn et al., 2002
- ³ Jackson-Smith et al., 199
- ⁴ Sanderson et al., 2005

Introduction

	Very unsatisfied	Unsatisfied	Somewhat unsatisfied	Somewhat satisfied	Satisfied	Very satisfied	At least somewhat satisfied
Pasture quality and yield	0.0%	7.9%	14.7%	<mark>46.6</mark> %	<mark>24</mark> .5%	6.1%	77.3%
Stored forage quality	0.0%	6.4%	16.7%	<mark>35.</mark> 3%	<mark>32.</mark> 1%	9.6%	76.9%
Soil fertility and health	0.6%	7.5%	<mark>1</mark> 9.4%	40.0 <mark>%</mark>	<mark>28</mark> .8%	3.8%	72.5%
Stored forage yield	1.9%	7.8%	<mark>1</mark> 8.8%	<mark>37.7</mark> %	<mark>29.</mark> 2%	4.6%	71.4%

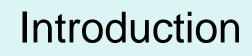

Self-reported producer satisfaction of pasture qualities

Introduction

	Very low	Low	Average	High	Very High
Growing higher energy forages	1.3%	15.8%	48.7%	28.5%	5.7%
Improving forage quality	0.0%	6.3%	50.0%	36.7%	6.9%
Understanding forage test results	2.6%	23.1%	44.2%	23.7%	6.4%
Strategies to maximize forage DMI	1.9%	16.5%	47.5%	27.9%	6.3%
Energy requirements for cows	0.6%	6.9%	62.9%	24.5%	5.0%

Self-reported producer knowledge on forage parameters.

How are producers meeting animal energy demands if they don't know how to produce feed with adequate energy?



ATTEN TO

A State of the sta

CAR AREA FA

CARD TO

际人

How do we determine forage impacts?

How do we determine forage impacts?

Rumen pH

- Relationship with VFAs

VFAs

• Acetate, propionate, butyrate

• 70 A:20 P:10 B ratio

Ammonia & microbial protein synthesis

Water soluble carbohydrates

- High sugar concentrations = \animal performance, improved milk yield, \arima amino acid flow
- Increased WSC may improve energetic balance

Methane

• ↑ WSC = ↓ Methane

Objective

To evaluate rumen energetics and performance metrics using an *in vitro* continuous culture fermenter system receiving different forage mixtures

Hypothesis

More complex forage mixtures will provide energy that is more effectively utilized.

Materials & Methods

Cool-Season Perennials & Legumes

Orchardgrass Dactylis glomerata Red Clover *Trifolium pratense* Alfalfa *Medicago sativa*

Materials & Methods –

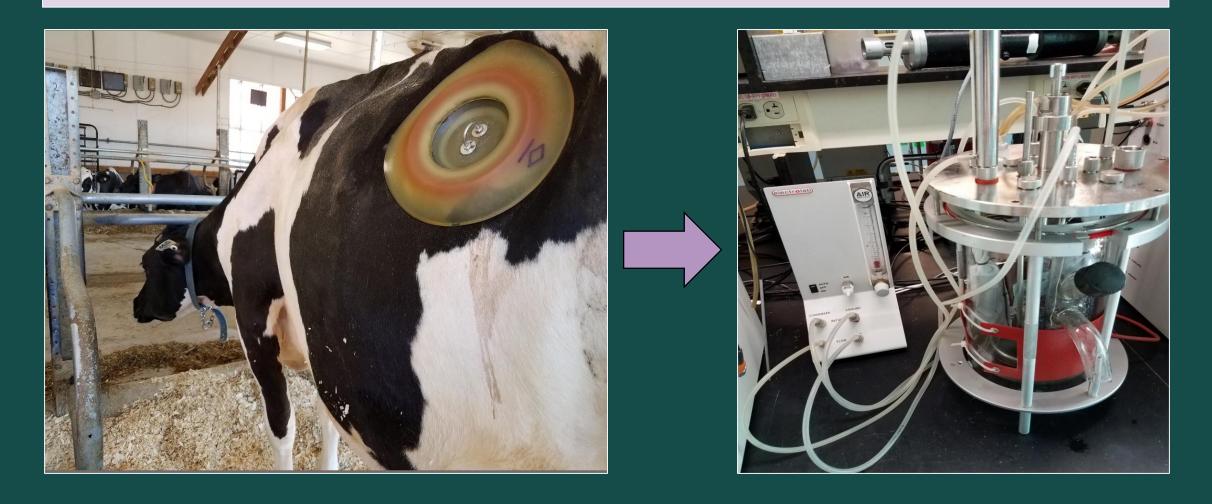
Warm-Season Annuals

Sorghum x Sudangrass Sorghum x drummondii

Pearl Millet *Pennisetum glaucum*

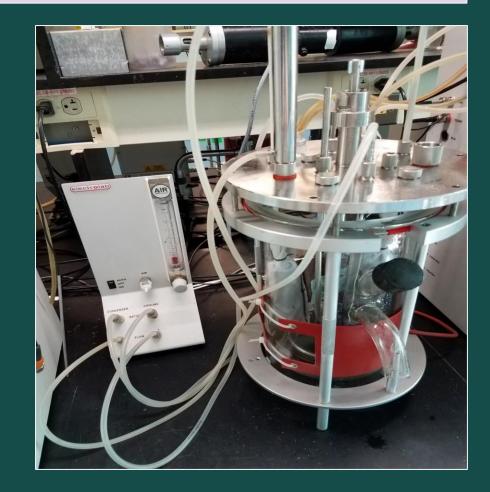
Materials & Methods –

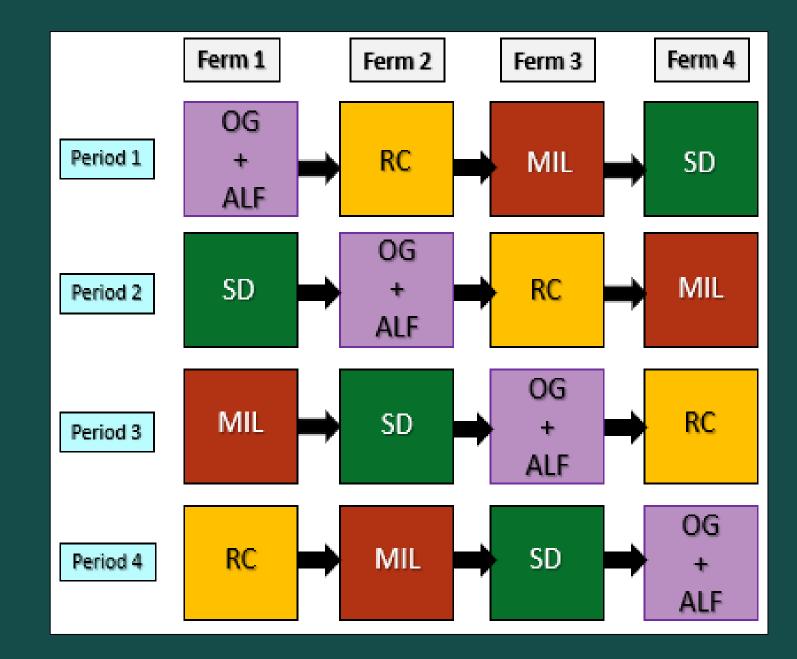
Harvest & Processing


Materials & Methods –

Harvest & Processing

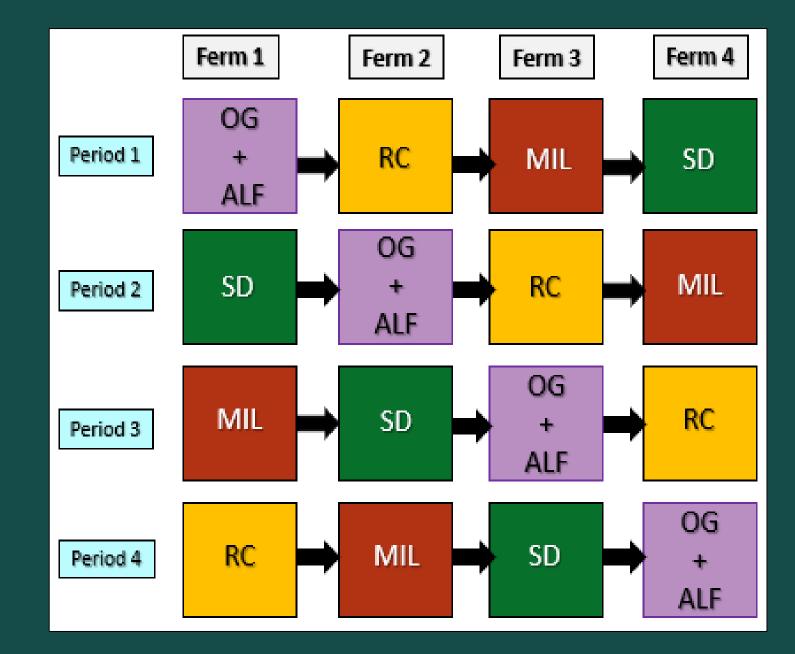
Materials & Methods -

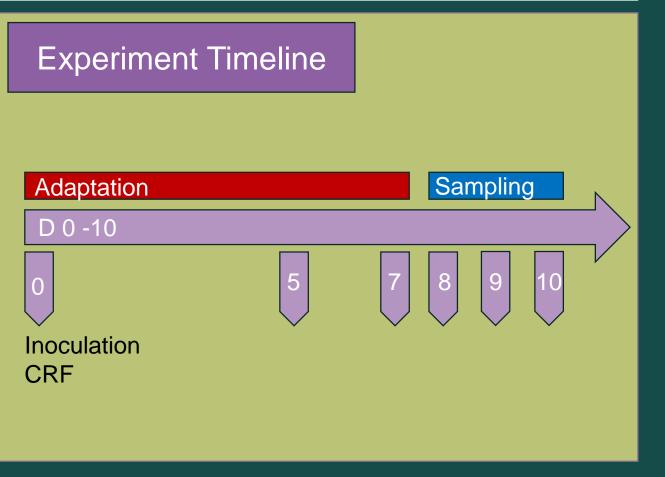

Rumen Fluid Collection & Continuous Culture Operation


Materials & Methods -

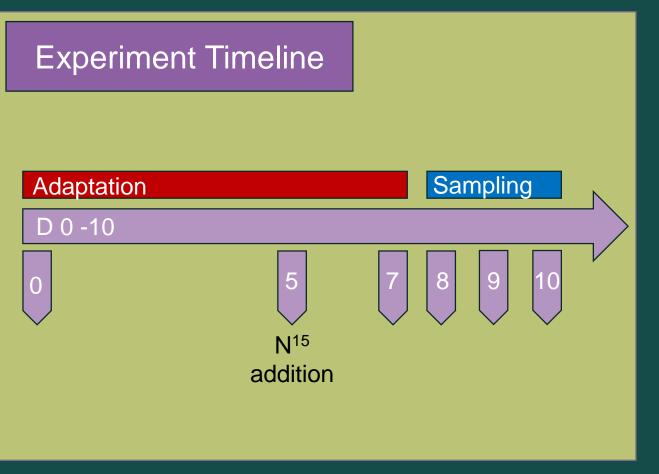
Continuous Culture Operation

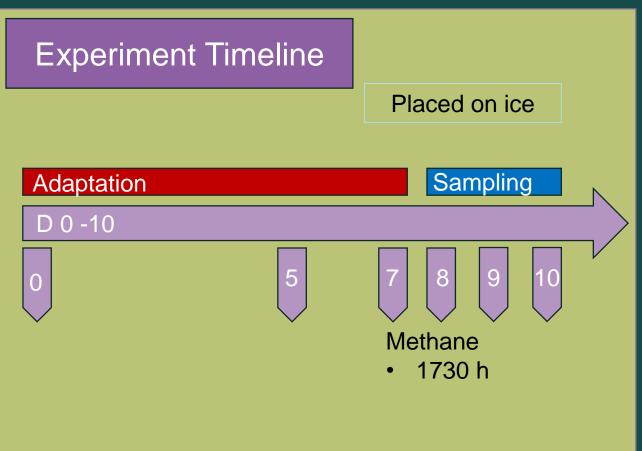
- Continuous Culture Fermenter
 - Dual flow
 - Outflow from spout and filters
 - Controlled buffer input and filter output
- Continuously heated & agitated
 - 39°C
 - 70 rpm; upcycle to 200 rpm
- Constant supply of CO₂
 - Maintain anaerobic environment
- pH, temperature, and agitation
 - Recorded continuously

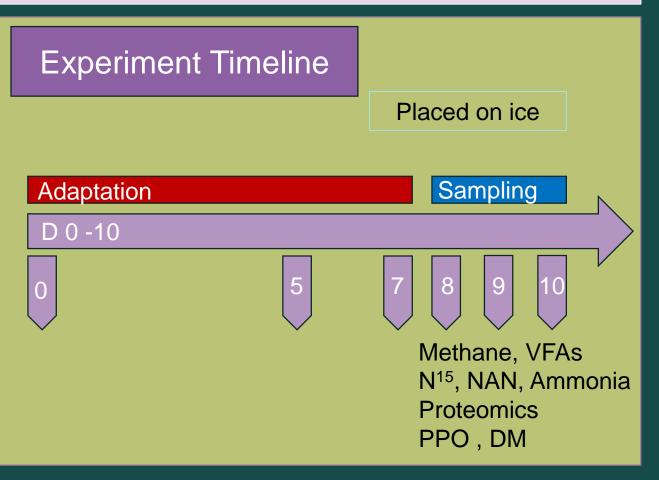

Treatments & Experimental Design DM basis (131 g) 50% OG: 50% ALF 25% OG: 25% ALF: 50% RC 25% OG: 25% ALF: 50% MIL 25% OG: 25% ALF: 50% SD


Treatments & Experimental Design

To mimic grazing intake patterns⁵:


- 33% DM at:
 - 0600 h
 - 1800 h
- 17% DM at:
 - 0720 h
 - 1920 h





Materials & Methods – Analysis

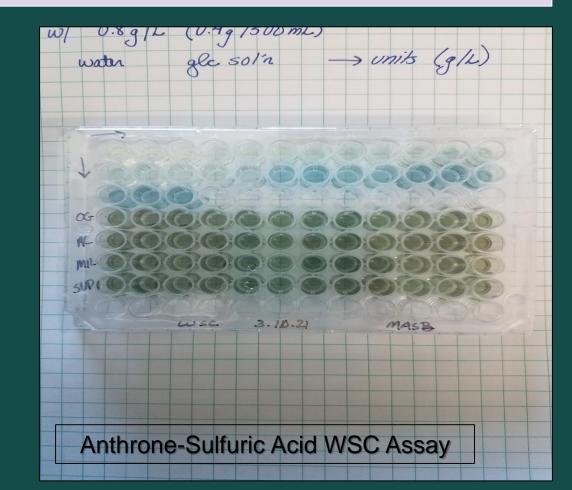
VFAs

- Analyzed by Miner Institute (Chazy, NY)
- Mass spectrometry

Methane

Converted from ppm basis to mg/dL

рΗ


Measured continuously every min for 10 d

WSC

• Anthrone- sulfuric acid colorimetric assay

Statistical analysis

- PROC MIXED procedure
- SAS 9.4

		Treatm	ent ¹		P – value ²			
	OG-ALF	RC	MIL	SD	SEM	Treatment	Period	Treatment x Period
Total VFA, mM	38.6	35.0	30.4	35.2	1.63	0.08	0.14	0.48
Individual VFA, mol/ 100 mol								
Acetate (A)	73.6	73.4	72.9	72.8	0.16	0.22	< 0.0001	0.07
Propionate (P)	16.3	16.3	16.9	16.6	1.13	0.52	0.0003	0.41
Butyrate (B)	6.87	7.02	6.70	7.06	0.09	0.32	0.06	0.51
Isobutyrate	0.89	0.85	0.95	0.97	0.02	0.13	0.64	0.03
Valerate (V)	1.30	1.38	1.36	1.44	0.03	0.06	0.19	0.02
Isovalerate	1.02	1.01	1.16	1.112	0.03	0.15	0.38	0.05
A:P	4.56	4.57	4.43	4.41	0.04	0.49	< 0.0001	0.31
A+B:P	4.99	5.00	4.83	4.84	0.05	0.46	0.0002	0.36

			Treatm	ient ¹		P – value ²			
		OG-ALF	RC	MIL	SD	SEM	Treatment	Period	Treatment x Period
	Total VFA, mM	38.6	35.0	30.4	35.2	1.63	0.08	0.14	0.48
	Individual VFA, mol/ 100 mol								
-	Acetate (A)	73.6	73.4	72.9	72.8	0.16	0.22	< 0.0001	0.07
	Propionate (P)	16.3	16.3	16.9	16.6	1.13	0.52	0.0003	0.41
	Butyrate (B)	6.87	7.02	6.70	7.06	0.09	0.32	0.06	0.51
R	Isobutyrate	0.89	0.85	0.95	0.97	0.02	0.13	0.64	0.03
	Valerate (V)	1.30	1.38	1.36	1.44	0.03	0.06	0.19	0.02
K	Isovalerate	1.02	1.01	1.16	1.112	0.03	0.15	0.38	0.05
X	A:P	4.56	4.57	4.43	4.41	0.04	0.49	< 0.0001	0.31
	A+B:P	4.99	5.00	4.83	4.84	0.05	0.46	0.0002	0.36

		Treatm	nent ¹		P - value ²			
	OG-ALF	RC	MIL	SD	SEM	Treatment	Period	Treatment x Period
Total VFA, mM	38.6	35.0	30.4	35.2	1.63	0.08	0.14	0.48
Individual VFA, mol/ 100 mol								
Acetate (A)	73.6	73.4	72.9	72.8	0.16	0.22	< 0.0001	0.07
Propionate (P)	16.3	16.3	16.9	16.6	1.13	0.52	0.0003	0.41
Butyrate (B)	6.87	7.02	6.70	7.06	0.09	0.32	0.06	0.51
Isobutyrate	0.89	0.85	0.95	0.97	0.02	0.13	0.64	0.03
Valerate (V)	1.30	1.38	1.36	1.44	0.03	0.06	0.19	0.02
Isovalerate	1.02	1.01	1.16	1.112	0.03	0.15	0.38	0.05
A:P	4.56	4.57	4.43	4.41	0.04	0.49	< 0.0001	0.31
A+B:P	4.99	5.00	4.83	4.84	0.05	0.46	0.0002	0.36

		Treatm	nent ¹		P – value ²			
-	OG-ALF	RC	MIL	SD	SEM	Treatment	Period	Treatment x Period
Total VFA, mM	38.6	35.0	30.4	35.2	1.63	0.08	0.14	0.48
Individual VFA, mol/ 100 mol								
Acetate (A)	73.6	73.4	72.9	72.8	0.16	0.22	<0.0001	0.07
Propionate (P)	16.3	16.3	16.9	16.6	1.13	0.52	0.0003	0.41
Butyrate (B)	6.87	7.02	6.70	7.06	0.09	0.32	0.06	0.51
Isobutyrate	0.89	0.85	0.95	0.97	0.02	0.13	0.64	0.03
Valerate (V)	1.30	1.38	1.36	1.44	0.03	0.06	0.19	0.02
Isovalerate	1.02	1.01	1.16	1.112	0.03	0.15	0.38	0.05
A:P	4.56	4.57	4.43	4.41	0.04	0.49	<0.0001	0.31
A+B:P	4.99	5.00	4.83	4.84	0.05	0.46	0.0002	0.36

		Treatn	nent ¹		1	P – value ²		
	OG-ALF	RC	MIL	SD	SEM	Treatment	Period	Treatment x Period
рН								
Mean	6.73	6.79	6.73	6.71	0.02	0.83	0.0002	0.36
Minimum	6.43	6.47	6.51	6.44	0.02	0.73	<0.0001	0.02
Maximum	7.14	7.24	7.05	7.10	0.04	0.51	0.0021	0.63
CH ₄								
mg/dL	50.8	21.2	6.2	6.9	3.52	<0.0001	< 0.0001	<0.0001
WSC								
g/kg DM	1.36	1.57	2.74	1.71	0.09	<0.0001	< 0.0001	0.001
A CALLER AND A CAL	11115-	ANN T	The Man	- A REAL FORME	M LT I I		and and the second states	

						4		
		Treatm	nent1			P – value ²		
	OG-ALF	RC	MIL	SD	SEM	Treatment	Period	Treatment x Period
рН								
Mean	6.73	6.79	6.73	6.71	0.02	0.83	0.0002	0.36
Minimum	6.43	6.47	6.51	6.44	0.02	0.73	< 0.0001	0.02
Maximum	7.14	7.24	7.05	7.10	0.04	0.51	0.0021	0.63
CH ₄					_		_	
mg/dL	50.8	21.2	6.2	6.9	3.52	<0.0001	<0.0001	<0.0001
WSC								
g/kg DM	1.36	1.57	2.74	1.71	0.09	<0.0001	< 0.0001	0.001
and and the second	1 1 ACT	COAL IN	Mar Mar	A AND A CAS	1 10 10 100		ale man all	AND THE REAL

						4		
		Treatm			P – value ²			
	OG-ALF	RC	MIL	SD	SEM	Treatment	Period	Treatment x Period
рН								
Mean	6.73	6.79	6.73	6.71	0.02	0.83	0.0002	0.36
Minimum	6.43	6.47	6.51	6.44	0.02	0.73	< 0.0001	0.02
Maximum	7.14	7.24	7.05	7.10	0.04	0.51	0.0021	0.63
CH ₄					_		_	
mg/dL	50.8	21.2	6.2	6.9	3.52	<0.0001	<0.0001	<0.0001
WSC								
g/kg DM	1.36	1.57	2.74	1.71	0.09	<0.0001	< 0.0001	0.001
and and and all	ALANT	COAL IN	Mar Mar	A MARINE	TLR IMM		ale man a part	

			100 Ch 200 Ch			4		
		Treatn	nent1			P – value ²		
	OG-ALF	RC	MIL	SD	SEM	Treatment	Period	Treatment x Period
рН								
Mean	6.73	6.79	6.73	6.71	0.02	0.83	0.0002	0.36
Minimum	6.43	6.47	6.51	6.44	0.02	0.73	< 0.0001	0.02
Maximum	7.14	7.24	7.05	7.10	0.04	0.51	0.0021	0.63
CH ₄					_		_	
mg/dL	50.8	21.2	6.2	6.9	3.52	<0.0001	<0.0001	<0.0001
WSC								
g/kg DM	1.36	1.57	2.74	1.71	0.09	<0.0001	<0.0001	0.001
	LA PART	The second second	And And	- Aller			ander and the state	

						-		
		Treatm	ent ¹			P – value ²		
	OG-ALF	RC	MIL	SD	SEM	Treatment	Period	Treatment x Period
рН								
Mean	6.73	6.79	6.73	6.71	0.02	0.83	0.0002	0.36
Minimum	6.43	6.47	6.51	6.44	0.02	0.73	< 0.0001	0.02
Maximum	7.14	7.24	7.05	7.10	0.04	0.51	0.0021	0.63
CH ₄							_	
mg/dL	50.8	21.2	6.2	6.9	3.52	<0.0001	<0.0001	<0.0001
WSC								
g/kg DM	1.36	1.57	2.74	1.71	0.09	<0.0001	<0.0001	0.001
A CONTRACT OF A	A CONFERENCE	AT IN AN AN	2 Mar		The Lord Land		the man is a set	

Conclusions

- Diverse forage mixtures may improve and inclusion of warm-season annuals may provide benefits relating to ruminant nutrition and energetic capture
 - Furthermore, inclusion of warmseason annuals may improve energetic capture by mitigating methane production.

Moving Forward

CURRENT

Awaiting analysis

- Feed & DM samples
- N¹⁵, Ammonia, NAN

Statistical analysis

- Proteomic data
- PPO

FUTURE WORK

Potential 6 x 6 Continuous Culture Study

- Combination of 6+ forages
 - Further diversification
- Evaluation of rumen energetic capture


Acknowledgements & Funding

- Dr. Sabrina Greenwood
- Dr. Heather Darby
- Dr. Jana Kraft
- Dr. Rick Grant
- Sara Ziegler
 - UVM Extension, Northwest Crops & Soils Program
- Ashley Driemel, Jackie Johnson, Dyani Jones, Lily Matthews, Abby Maucieri, & Michelle LaCasse

- Paul Miller Research Farm Staff
 - Burlington, VT
- Borderview Research Farm Staff
 - Alburgh, VT
- Funding is provided by OREI project #2018-02802

