The University of Vermont

METHODS OF APPLIED MATHEMATICS

Comprehensive Examination

January 2010

NAME:
1. Show that the solution to the nonhomogenous Fredholm equation

\[y(x) = f(x) + \lambda \int_a^b K(x,t)y(t)dt \]

where \(K(x,t) \) is a Hilbert-Schmidt kernel, \(f(x) \) and \(y(x) \) are square integrable functions, and \(\lambda \) is not an eigenvalue of the homogeneous Fredholm equation, has solution of the form

\[y(x) = f(x) - \lambda \int_a^b \Gamma(x,t;\lambda)f(t)dt. \]

Here, the resolvent kernel \(\Gamma(x,t;\lambda) \) can be expressed in terms of eigenvalues \(\lambda_k \) and orthonormal eigenfunctions \(\phi_k(x) \) of the homogeneous Fredholm equation as

\[\Gamma(x,t;\lambda) = \sum_{k=1}^{\infty} \frac{\phi_k(x)\phi_k(t)}{\lambda - \lambda_k}, \quad (a \leq x \leq b, a \leq t \leq b) \]

2a. Verify the following order relations:

(i) \(\varepsilon^2 \ln \varepsilon = o(\varepsilon) \) as \(\varepsilon \to 0^+ \).
(ii) \(\sin \varepsilon = O(\varepsilon) \) as \(\varepsilon \to 0^+ \).

2b. Given that \(f(x) \) is continuous and has the asymptotic representation \(f(x) \sim \sum_{n=0}^{\infty} a_n x^{-n} \) as \(x \to \infty \), show that

\[F(x) = \int_x^{\infty} \left(f(t) - a_0 - \frac{a_1}{t} \right) dt \sim \sum_{n=1}^{\infty} \frac{a_{n+1}}{n x^n}. \]

3. Obtain the leading-order solutions of period \(2\pi \) of the equation

\[\ddot{x} + \Omega^2 x - \varepsilon x^2 = \Gamma \cos t, \quad \varepsilon > 0 \]

when

(A) \(\Omega \) is far from resonance and not close to an integer;
(B) \(\Omega \approx 1 \) and \(\Gamma \) is small. Note: In (B), assume that \(\Omega^2 = 1 + \varepsilon \beta \) and \(\Gamma = \varepsilon \gamma \).

4. Find the WKB approximation to the equation

\[\varepsilon^2 y'' - (1 + x)^2 y = 0, \quad x > 0 \]

with boundary conditions \(y(0) = 0 \) and \(\lim_{x \to \infty} y(x) = 0 \).
5. Use the method of steepest descent to obtain the asymptotic expansion for the integral

\[f(x) = \int_0^3 \ln t \ e^{ixt} dt, \quad x \to \infty. \]

6. Construct a leading-order approximation to the solution, which is uniformly valid on \(0 \leq x \leq 1 \) for the problem

\[\varepsilon y'' + 2y' + y = 0, \quad y(0) = 0, \quad y(1) = 1 \]

where \(\varepsilon \) is small and positive.

7. The modified Bessel function \(I_n(x) \) has the integral representation

\[I_n(x) = \frac{1}{\pi} \int_0^\pi \exp(x \cos \theta) \cos n\theta \, d\theta. \]

Show that \(I_n(x) \sim \frac{e^x}{(2\pi x)^{1/2}}, \quad x \to \infty. \)

8. Use the Fredholm Alternative Theorem (without proof) to find conditions under which the nonhomogenous integral equation has a solution

\[y(x) = f(x) + \lambda \int_0^\pi \left(\cos^2 x \cos 2t + \cos 3x \cos^3 t \right) y(t) \, dt \]

for the following cases; \(A \) \(f(x) = \cos x \) and \(B \) \(f(x) = x \). Here \(\lambda \) is an eigenvalue of the corresponding homogeneous integral equation. (Hint: the values of \(\lambda \) should be obtained first.)

9. Find the asymptotic representation for \(f(z) \), \(|z| \to \infty \) in the sector \(0 < |\arg z| < \pi/2 \), where

\[f(z) = \int_0^\infty \frac{e^{-zt}}{1 + t^4} \, dt. \]