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Stochasticity and the limits
of molecular signaling
in plant development

Philip M. Lintilhac*

Department of Plant Biology, The University of Vermont, Burlington, VT, United States
Understanding plant development is in part a theoretical endeavor that can

only succeed if it is based upon a correctly contrived axiomatic framework.

Here I revisit some of the basic assumptions that frame our understanding of

plant development and suggest that we consider an alternative informational

ecosystem that more faithfully reflects the physical and architectural realities of

plant tissue and organ growth. I discuss molecular signaling as a stochastic

process and propose that the iterative and architectural nature of plant growth

is more usefully represented by deterministic models based upon structural,

surficial, and stress-mechanical information networks that come into play at

the trans-cellular level.
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Introduction

As plant biologists we all learn to interpret the patterns of plant materials seen in

section. This is only possible because plant cells cannot separate after cytokinesis, so the

tissue patterns and cell-to-cell relationships established during division are retained and

can be used to reconstruct the cell division activities and cell lineages of the growing

organ. But animal cells are free to separate from each other and can migrate to new

locations after division, obliterating any tissue patterning imposed by cell division itself.

One consequence of this is that multicellular structural relationships and the physical

signaling pathways they enable cannot be maintained as rigorously in animals as they are

in plants. From a broader perspective, movement is fundamental to animal life. Animals

need to move to find food, and evolution has provided them with tools suited to that end.

Highly developed sensory systems, the ability to manage explosive muscle contraction,

and the neurological integration that enables animals to interpret their environment in

real time, all reflect complex developmental programs that are not found to the same

extent in the plant kingdom.
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But does this mean that developmental programming is

simpler in the plant kingdom than it is in animals? Do the

patterns that we see in the anatomy of multicellular plant organs

and tissues reflect less highly evolved morphogenetic control

systems? In this essay I try to formalize what many of us have

intuitively suspected for many years: that developmental

programming in the plant kingdom is in many respects more

architecturally integrated and more spatially deterministic than

the complex molecular control networks that evolution has

made use of in the animal kingdom.
The prevailing narrative

When we consider development in terms of the cellular

processes upon which life is built, we tend to think in molecular

terms. Molecular thinking brings cellularity into the tangible

world of things that can be named, manipulated, and even

synthesized. Molecules can be thought of as the citizens of a

cellular society. They can recognize and exchange information

with other molecules. They can archive information for the next

generation. Molecules can be visualized. We can see their

structures in our minds. We can attach markers to them and

follow them around the cell and even edit the genetic templates

that they derive from. So, it is not surprising that we think of

developmental differentiation events, and their associated

signaling pathways, as depending upon the exchange of

molecular information and the migration of key molecular

species from one part of a cell to another, or from one part of

an organism to another. We interpret hormonal messaging,

cellular signal cascades, and the induction of cellular

differentiation in terms of a kind of molecular quorum-

sensing; meaning that members of the correct molecular

species must appear in sufficient number, at the right place,

and at the right time to elicit a cellular response.

But molecular signaling, is fundamentally a stochastic

process (Losick and Desplan, 2008), which is to say it involves

an element of randomness (Bailey, 1964). Moving molecules is

like herding cats. It does not necessarily lead to deterministic

outcomes. So, it is reasonable to ask whether there are other

kinds of information that can overcome some of the limitations

of molecular signaling. Recent advances in plant cell and tissue

biomechanics (Weise and ten Tusscher, 2019) are beginning to

expose structural, mechanical, and surficial relationships that

make up networks of geometrically precise and environmentally

robust decision-making circuits uniquely adapted to the sessile,

but architecturally sophisticated, growth-habit of the land plants.

Physical signaling networks can be found wherever life has

evolved, but in the plant kingdom it can be argued that the

structural necessities of plant growth have promoted them as the

primary choreographer of organogenesis.
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An evolutionary perspective

When plants first emerged onto dry land the constraints on

growth and form were immediate and dramatic. Buoyant support

vanished. Competition for sunlight made it necessary to raise a

vertical axis above the land surface, which in turn required the

transport of water to the growing tip. Gravitational loads meant

that structural adaptations became paramount, driving the

evolution of the cell wall, both at the ultrastructural level and at

the level of the apoplast as a whole (Niklas and Spatz, 2012).

The evolution of the cellulosic cell wall also enabled plant

cells to develop significant turgor pressures which could be used

to drive the volumetric growth of cells and organs. In these high

stress growth environments cell wall placements and

orientations became critical. The release of growth forces into

the surrounding tissues by local cell expansion could be used to

transmit stress-mechanical information instantly, accurately,

and with no dependence on molecular identity and stochastic

molecular signaling. New kinds of control circuitry became

possible, linking tissue architecture, organ topography, and

morphogenetic behavior in deterministic feedback loops that

support the iterative nature of plant growth (Lintilhac, 2014).
The limits of molecular signaling

Molecular signaling in dissipative systems is difficult,

particularly where the census number of any signaling

molecule is low or when environmental noise is high, and

although molecular signals can be highly selective in targeting

specific receptors and eliciting specific responses, they require

the transport of molecules from one location to another in

roughly stoichiometric numbers, regardless of environmental

noise. In the intracellular environment this kind of directed

transport can be accomplished by enclosing populations of

molecules in membrane-bound vesicles which can then be

moved to specific locations within the cell, but molecule-

specific trafficking mechanisms are not available when the

target is beyond the reach of symplastic transport.

Physical signaling networks, on the other hand, are clearly

deterministic. Force transmission is directional, instantaneous,

and robust. It can effect action at a distance without molecular

transport of any kind; and given the strong and permanent

mechanical coupling between cells in the plant kingdom, and the

ability of growing tissues to generate significant stress intensities,

it seems reasonable to assume that evolution would have found

ways to explore and recruit material behaviors and stress-

mechanical relationships (Hernandez-Hermandez, 2014) to

coordinate cellular proliferation, organic form, and the precise

placement of new division walls (Facette et al., 2019).
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Plant apical meristems are shape generators. But shape is

more than just an outcome of tissue growth. The surface

topography of a growing structure is itself a controlling

variable. Free surfaces impose simple rules on the behavior of

principal stresses (Heywood, 1969) acting as waveguides that

channel force transmission to reshape the underlying stress

fields (Frocht, 1962). Taken as a whole, these physical and

material feedbacks are demonstrably critical during plant

development. They integrate material behaviors from the

nano-structural level to the level of whole tissues and organs,

providing robust, instantaneous, and highly directional signals

that can be interpreted at the cytoskeletal level and acted upon at

the cell and tissue levels, resulting in the precise division wall

orientations that we see everywhere in embryonic plant tissues

(Jackson et al., 2018). We can begin to think of morphogenesis in

the plant kingdom as an emergent manifestation of physical and

surficial feedback circuits that regenerate themselves without

direct genetic scripting (Lintilhac, 2014).

However, addressing the deficiencies in our understanding

of plant development requires more than just an

acknowledgement of the limits of stochastic molecular

signaling. We need to be able to visualize and document the

networks of physical interactions that control morphogenesis at

the tissue and organ levels. Molecular signals can be visualized

and followed in various ways, including the use of fluorescent

probes; but there are no fluorescent probes for tension and

compression. Transmitted force is essentially invisible, making it

difficult to understand how it is interpreted at the cellular level.

For instance, we need to understand the nature of the

relationship between transmitted force and the positioning of

the cell plate during cell division. How does the cell resolve and

respond to the forces acting on it?

It has been known for many years that the patterns of

division wall placements we see in actively dividing plant

tissues reflect the principal stress fields radiating through

appropriately configured photoelastic models (Lintilhac and

Vesecky, 1984). But we need new experimental tools that will

allow us to simplify stress-mechanical relationships and isolate

critical variables. We need to develop experimental systems

where single plant cells can be subjected to explicitly defined

stress-mechanical inputs (Grasso and Lintilhac, 2016), and the

resulting cellular behaviors can be more precisely monitored.

Ultimately, we will need new and innovative ways to map the

biomechanical landscape of organogenesis.

Historically, visualizing stress distributions and separating

their tensile and compressive components was accomplished

with photoelastic stress analysis (Lintilhac, 1974), a modeling

technique which has largely been superseded by computer-based

finite-element modeling. More recently however, photoelastic

analysis has re-emerged in the form of Digital Photoelastic

Analysis (Solaguren-Beascoa, 2009), which combines the visual

immediacy that derives from photoelastic rendering with the
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convenience of digital extraction of principal stress trajectories.

Now we need to look more deeply into the physical and

biomechanical circuitry that coordinates plant development in

a robust, deterministic, progression of morphogenetic changes.
The trans-cellular domain

In order to clarify the distinctions between various

intracellular signaling processes and their extracellular and

tissue-level counterparts I am introducing the concept of the

trans-cellular domain as a regime of multicellular informational

channels that extends beyond the intracellular cytoplasmic

domain, beyond the symplast, and beyond the apoplast. The

trans-cellular domain comprises whole-cell multicellular

information channels that span multiple individual cell

lengths, and which are connected both symplastically and

apoplastically to create a variety of integrated networks over

which physical and structural information can be transmitted at

the tissue and organ levels. Most physical signals acting through

growing plant tissues would be considered to propagate in the

trans-cellular domain because they are necessarily reflected in

osmotic and metabolic changes at the level of the single cell, and

structural, ultrastructural, and biomechanical changes at the

apoplastic level.
Conclusion

One of the most vexing problems confronting researchers

and students of plant development and morphogenesis is the

difficulty in reconciling stochastic hormonal and biochemical

signaling systems with the structural precision and architectural

fitness of cell division and cell wall installation in growing plant

tissues. In many instances molecular information transfer

appears to break down because of its inherent spatial

imprecision and its sensitivity to environmental noise. But by

taking advantage of the mechanical continuity of plant tissues,

molecular signals that originate in stochastic cellular processes

can be translated into deterministic physical signals that are

precise, instantaneous, and robust in the face of environmental

noise. Cell and tissue mechanics, rather than being simply an

interesting sub-discipline of plant developmental biology,

become the language through which critical developmental

information is transmitted at the trans-cellular level of whole

tissues and organs. Interpreting the choreography of plant

development in terms of deterministic, biophysically integrated

behaviors operating at the trans-cellular level complements our

understanding of transcription-directed signaling in land plant

development, but it also offers the prospect of being able to trace

many aspects of plant development and morphogenesis back to

physical first principles and axioms.
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