# **UVM Physics MS: Comprehensive Exam**

| Date: | Saturday January 11, 2013 |
|-------|---------------------------|
| Time: | 8:00 AM - 12:00 PM        |

# INSTRUCTIONS

- Provide careful and detailed solutions to 4 out of the 5 problems, starting each on a new page.
- Only write your name on the first page of the exam booklet, but keep all your solutions together.
- The first three problems in Classical Mechanics, Electricity & Magnetism and Quantum Mechanics are **mandatory**. You must answer **one** problem in *either* Thermal/Statistical Physics or Mathematical Physics.
- You may attempt all 5 problems, but you must indicate which you would like to be graded.
- The exam is closed book; any formulas you may need will be provided.

| Question | Points | Score |
|----------|--------|-------|
| 1        | 10     |       |
| 2        | 10     |       |
| 3        | 10     |       |
| 4        | 10     |       |
| 5        | 10     |       |
| Total:   | 40     |       |

Name: \_

### 1. [10 points] Classical Mechanics

Consider a simple pendulum as shown to the right, where a bob of mass m is hanging from a light string of length  $\ell$ . At time t = 0 the mass is displaced by an angle  $\phi_0$ .

- (a) Find the equation of motion for  $\phi(t)$  for the case where  $\phi_0$  is small. What is the period  $\tau_0$  of oscillatory motion? Describe why such motion is considered to be "harmonic." Why is this type of motion so ubiquitous in nature?
- (b) Now consider the more interesting case where  $\phi_0$  is not small. Using conservation of energy, prove that the period of oscillations  $\tau$  can be written in terms of the complete elliptic integral of the first kind K:

$$\frac{\tau}{\tau_0} = \frac{2}{\pi} K \left( \sin \frac{\phi_0}{2} \right)$$

where

$$K(k') = \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k'^2t^2)}}$$

and  $\tau_0$  is the period for small angle oscillations in (a). Hint: you may find the trig identity  $2\sin^2 A = 1 - \cos 2A$  useful when simplifying.

(c) Perform a Taylor expansion of the integrand to determine the correction to  $\tau_0$  (as a number) if  $\phi_0 = \pi/4$ .



#### 2. [10 points] Electricity & Magnetism

A thin, very long cylindrical insulating shell of radius a carries a uniform surface charge density  $\sigma$  (charge per unit area).

- (a) Find the electrostatic field everywhere in space.
- (b) The shell is now rotating around its axis ( $\hat{z}$ -axis) with the frequency  $\omega_0 = \text{const.}$  The rotating insulator produces a surface current density. Find the magnetic field generated everywhere in space.
- (c) After a while the cylinder starts to slow down at a constant rate *i.e.*  $\omega(t) = \omega_0 \alpha t$  where  $\alpha \in \mathbb{R} > 0$ . Find the electric field induced by the time dependent magnetic fields.
- (d) Find the electromagnetic energy flow rate through the entire surface area of the cylinder.

## 3. [10 points] Quantum Mechanics

Consider a particle of mass m in one dimension (coordinate x), subjected to an attractive  $\delta$  function potential  $U(x) = -U_0\delta(x)$ ,  $U_0 > 0$ . It is known that there is one bound state solution in such a potential, with energy  $E_0 < 0$ .

- (a) Write down the Schrödinger equation for the wave function in this potential. Choose the wave function in the regions x > 0 and x < 0, so that it is normalizable (exponentially decays at infinity.) Write down the normalization condition.
- (b) Impose the correct boundary conditions at the origin. Show that in addition to the wave-function continuity equation  $\psi(+0) = \psi(-0)$ , there is also a condition on the wave-function derivative (which experiences a jump):

$$\psi'(+0) - \psi'(-0) = -\frac{2m}{\hbar^2}U_0\psi(0)$$

(c) From your previous results find  $E_0$  in terms of  $U_0$ , m and  $\hbar$ .

### 4. [10 points] Thermal/Statistical Physics

The energy of free electrons can be written as:

$$\varepsilon = \frac{\hbar^2}{2m} \left(\frac{\pi}{L}\right)^2 n^2$$

where  $n \in \mathbb{Z}^+$ . Each electron has spin-1/2 and magnetic dipole moment  $\mu$ . For a system consisting of N electrons:

- (a) Find the density of states of electrons as a function of energy in one dimension where L is the length of the system.
- (b) Find the density of states of electrons in two dimensions where the area of the system is  $A = L^2$ .
- (c) Consider the two dimensional case at zero temperature and answer the following:
  - i. Find the Fermi energy  $\varepsilon_{\rm F}$ . What does this number physically represent?
  - ii. In the absence of any external magnetic field, what is the number of spin up electrons?
  - iii. If there is an applied magnetic field B, the spin up direction is along the magnetic field. Under the condition  $\mu B \ll \varepsilon_{\rm F}$ , what is the number of spin-up electrons? (Hint: the spin-up electron has lower magnetic potential energy,  $u_{\rm up} = -\mu B$ ,  $u_{\rm down} = \mu B$ .)

- 5. [10 points] Mathematical Physics
  - (a) Evaluate the Fourier transform of a square pulse function

$$f(x) = \begin{cases} 1 & ; & |x| < a \\ 0 & ; & |x| > a \end{cases}$$

(b) Parseval's theorem states

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |F(k)|^2 dk$$

where F(k) is the Fourier transform of f(x). Use this to evaluate the following integral

$$\int_{-\infty}^{\infty} \frac{\sin^2 y}{y^2} dy.$$

(c) Evaluate the integral in (b) using contour integration in the complex plane. (Be sure to sketch your contours clearly.)