Unraveling the novel quantum phenomena in two-dimensional materials using transport and photoemission spectroscopy

The extreme surface sensitivity of two-dimensional (2D) materials provides an unprecedented opportunity to engineer the physical properties of these materials via changes to their surroundings, including substrate, adsorbates, defects, etc. In addition, 2D materials can be mechanically assembled layer-by-layer to form vertical or lateral heterostructures, making it possible to create new material properties merely by the choice of the constituting 2D layers and the relative twist angle between them. In this talk, I will discuss our recent transport [1] and photoemission [2] results that shed light on the intricate relationship between controlled external perturbations, substrate, and electronic properties of 2D materials. I will show that the decoration of the 2D materials with adatoms, such as sub-lattice selective atomic hydrogenation of graphene and alkali metal doping of single layer WS\(_2\) can be utilized to tailor electronic properties and induce novel quantum phenomena in 2D landscape.