Passing at the PhD level is accomplished by solving at least two problems in each section while either solving a total of 6 problems or solving 5 problems and making significant progress on two others.

\(\mathbb{R} \) means the real numbers, \(\mathbb{C} \) is the complex numbers, and \(\mathbb{Q} \) is the rational numbers. If \(E \subset X \) is a set then \(\chi_E : X \to \mathbb{R} \) means

\[
\chi_E(x) := \begin{cases}
1 & \text{if } x \in E; \\
0 & \text{if } x \in X \setminus E.
\end{cases}
\]

Complex Analysis.

1. Let \(f \) be analytic on \(\mathbb{C} \setminus \{0\} \) and suppose that, for all \(z \in \mathbb{C} \setminus \{0\} \),

\[
|f(z)| \leq |z|^{-1/3} + |z|^{3/4}.
\]

Show that \(f \) is constant.

2. Use residues or a substitution to show that

\[
\int_{-\infty}^{\infty} \frac{\log |x|}{1 + x^2} \, dx = 0
\]

and then use that fact plus residues to show

\[
\int_{-\infty}^{\infty} \frac{(\log |x|)^2}{1 + x^2} \, dx = \frac{\pi^3}{4}.
\]

3. Let \(f, g : \mathbb{C} \to \mathbb{C} \) be entire and suppose that

\[
|f(z)| \leq |g(z) + f(z)|
\]

for all \(z \in \mathbb{C} \). Show that \(\{f, g\} \) is a linearly dependent set: \(\exists \lambda_1, \lambda_2 \in \mathbb{C} \), not both equal to 0, such that \(\lambda_1 f(z) + \lambda_2 g(z) = 0 \) for all \(z \in \mathbb{C} \). (Hint: Divide)

4. Let \(\Omega := \mathbb{C} \setminus ((-\infty, -1] \cup [1, \infty)) \). Find an analytic bijection \(f : \Omega \to \{z : \Re z > 0\} \). Express your \(f \) as a sequence of compositions, sketching the intermediate domains.

5. Let \(f : \mathbb{C} \to \mathbb{C} \) be entire and suppose that, for each \(z \in \mathbb{C} \), there is a \(k = k(z) \in \{1, 2, 3, \ldots\} \) such that \(f^{(k)}(z) = 0 \) (where \(f^{(k)} \) means \(f \)'s \(k \)th derivative). Show that \(f \) is a polynomial. (Hint: For each \(k \), set \(E_k := \{z \in \mathbb{C} : f^{(k)}(z) = 0\} \). What is the cardinality of \(E_k \)?)

6. Let \(f : \mathbb{C} \setminus \{0\} \to \mathbb{C} \) be analytic and suppose that, for every \(k \in \{1, 2, 3, \ldots\} \), there is a \(z_k \in \mathbb{C} \setminus \{0\} \) such that \(|z_k| < 1/2 \) and \(|z_k^k f(z_k)| > 1/2 \). Identify the type of singularity at \(z = 0 \) and show that there is a sequence \(\{\zeta_j\} \subset \mathbb{C} \setminus \{0\} \) such that \(\zeta_j \to 0 \) and \(f(\zeta_j) \to 1 \).
7. Define
\[f(z) := \frac{z + 1}{z^2 + z - 2}. \]
Find a Laurent expansion for \(f \), of the form
\[\sum_{n=-\infty}^{\infty} c_n (z+1)^n, \]
which converges to \(f \) in \(\{ z \in \mathbb{C} : 1 < |z+1| < 2 \} \).

Real Analysis.

8. Let \((M,d)\) be a metric space. Show that, if \(A, B \subset M \) are closed and \(A \cap B = \emptyset \), then there exist open sets \(U, V \) such that \(A \subset U, B \subset V \), and \(U \cap V = \emptyset \). (Hint: \(U \) and \(V \) are unions of open balls. How do you choose the radius of each ball?)

9. Let \((X, \mathcal{M}, \mu)\) be a measure space and let \(\phi : X \to [0, \infty] \) be measurable. For \(E \in \mathcal{M} \) define \(\lambda(E) := \int_E \phi \, d\mu = \int \phi \chi_E \, d\mu \). Use standard limit theorems to show that \(\lambda \) defines a measure on \(\mathcal{M} \) and that, if \(f : X \to [0, \infty] \) is measurable, then
\[\int f \, d\lambda = \int f \, \phi \, d\mu. \]

You may use without proof the fact that there exists a sequence \(\{ \psi_n \}_{n=1}^{\infty} \) of non-negative measurable simple functions such that \(\psi_n (x) \leq \psi_{n+1} (x) \) for all \(x \) and \(n \), and \(\psi_n (x) \to f(x) \) pointwise as \(n \to \infty \).

10. Use standard limit theorems from measure theory and facts from calculus (about the integrals of exponentials, etc.) to show that
\[\int_0^{\infty} \frac{xe^{-x}}{1 - e^{-x}} \, dx = \sum_{k=1}^{\infty} \frac{1}{k^2}, \]
where ‘\(dx \)’ means integration with respect to Lebesgue measure. (Hint: Use a geometric series.)

11. Enumerate the rationals \(\mathbb{Q} := \{ q_1, q_2, q_3, \ldots \} \), and define
\[f(x) := \sum_{k=1}^{\infty} \frac{2^k}{k^2} \chi(q_k - 2^{-k}, q_{k+1} + 2^{-k})(x). \]

Show that
\[\int_{\mathbb{R}} f(x) \, dx < \infty \]
(where ‘\(dx \)’ means integration with respect to Lebesgue measure), but that, for every \(p > 1 \) and every non-empty open \(U \subset \mathbb{R} \),
\[\int_U f(x)^p \, dx = \infty. \]
12. Let $f : [a, b] \to \mathbb{R}$ be continuous, with $f(a) \leq f(b)$, and suppose that f has no local maximum or minimum on (a, b). Show that f is non-decreasing on all of $[a, b]$: $\forall x, y \in [a, b], x < y \Rightarrow f(x) \leq f(y)$. (Hint: First show that, if $x \in [a, b]$, then $f(a) \leq f(x) \leq f(b)$.)

13. Let $f : [a, b] \to \mathbb{R}$ be continuous, with $[a, b] \subset \mathbb{R}$ and $a < b$. Use standard facts about continuous functions and the Riemann integral to show that

$$
\lim_{n \to \infty} \left(\int_{a}^{b} |f(x)|^n \, dx\right)^{1/n}
$$

exists and equals $\max_{[a, b]} |f(x)|$.

14. Show that, if $\{a_k\}_1^\infty$ is any sequence of non-negative numbers and $0 < p < q < \infty$ then

$$
\left(\sum_{k=1}^{\infty} a_k^q\right)^{1/q} \leq \left(\sum_{k=1}^{\infty} a_k^p\right)^{1/p}.
$$