Analysis Qualifying Exam

August, 2021

Passing levels:

MS: You must do, in total, at least 4 problems completely correctly, or 3 completely correctly with substantial progress on 2 others. You are free to choose the problems from either or both sections.
PhD: You must do: a) at least 2 completely correctly from each of the two sections; and b) at least 6 completely correctly in total, or 5 completely correctly with substantial progress on 2 others.
Notation: \mathbf{R} means the real numbers and \mathbf{C} means the complex numbers. If $z \in \mathbf{C}$ then $\Re z$ means z 's real part and $\Im z$ is its imaginary part. If $f: X \rightarrow Y$ and $A \subset X$ then $f[A]:=\{f(x): x \in A\}$.

Section I: Real analysis.

1. Let (X, \mathcal{M}, μ) be a measure space and $f \in L^{1}(X, \mathcal{M}, \mu)$. Show that, for all $\epsilon>0$, there is a $\delta>0$ so that, if $E \in \mathcal{M}$ and $\mu(E)<\delta$, then $\int_{E}|f| d \mu<\epsilon$.
2. Let $\phi \in L^{\infty}(\mathbf{R}, \mathcal{L}, m)$ (the usual Lebesgue space on the line). For $t>0$ define

$$
G(t):=\int_{\mathbf{R}} e^{-t|x|} \phi(x) d x
$$

where the integral is assumed to be a Lebesgue integral. Show that G is defined and continuous on all of $(0, \infty)$. You may assume standard calculus facts about the exponential function.
3. Let (X, d) be a metric space. Show that, if $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two Cauchy sequences in X, then

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)
$$

exists as a real number, where the limit is taken with respect to the usual $|\cdot|$-based metric.
4. Let (X, d) be a connected metric space, and let $f: X \rightarrow \mathbf{R}$ have the property that, for every $p \in X$, there is an $r>0$ such that f is constant on $B(p ; r):=\{x: d(x, p)<r\}$. Show that f is constant on all of X.
5. Find, with justification via appropriate limit theorems,

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-3 x} d x
$$

You may assume standard calculus facts about the exponential function.
6. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be differentiable everywhere, and suppose that

$$
\lim _{x \rightarrow \infty} f^{\prime}(x)=0
$$

Show that

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}
$$

exists and equals 0 .
7. Consider $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $f(x, y):=\left(x^{2}+2 x y, x y+y^{2}\right)$. Show that, if $(a, b) \neq(0,0)$, there is an open $U \subset \mathbf{R}^{2}$ with $(a, b) \in U$ such that f is one-to-one on U, $f[U]$ is open, and there is a differentiable $g: f[U] \rightarrow U$ such that $g(f(x, y))=(x, y)$ for all $(x, y) \in U$.
8. Let (X, d) be a compact metric space, where "compact" means "every open cover of X has a finite subcover". Show that every infinite sequence $\left\{x_{n}\right\} \subset X$ has a subsequence converging to some $p \in X$.

Section II: Complex analysis.

1. Find an analytic bijection $f:\{z: \Re z>0,|z|>1\} \rightarrow\{z: \Re z>0\}$. Write your bijection as a sequence of compositions of analytic bijections, with sketches of the intermediate domains.
2. Use residues to show that

$$
\int_{-\infty}^{\infty} \frac{\cos 2 x}{\left(1+x^{2}\right)^{2}} d x=\frac{3 \pi}{2 e^{2}}
$$

3. Let $\bar{D}:=\{z:|z| \leq 1\} \subset U$ for some open $U \subset \mathbf{C}$. Suppose that $f: U \rightarrow \mathbf{C}$ is analytic and $|f(z)|<1$ for all z with $|z|=1$. Show that there is a unique ζ with $|\zeta|<1$ such that $f(\zeta)=\zeta$.
4. State a form of the maximum principle for analytic functions and use it to prove the following: Let $U \subset \mathbf{C}$ be a connected open set, with $f: U \rightarrow \mathbf{C}$ analytic. Write $f:=u+i v$, where u and v are f 's real and imaginary parts. Suppose there is some $a \in U$ such that, for all $z \in U$,

$$
3 u(a)+2 v(a) \geq 3 u(z)+2 v(z) .
$$

Conclusion: f is constant.
5. Suppose that f is analytic and zero-free on $\{z: 0<|z|<1\}$. Show that, if 0 is not a removable singularity for f or $1 / f$, then 0 is an essential singularity for both of them.
6. Find the complex numbers $\left\{c_{n}\right\}_{-\infty}^{\infty}$ such that

$$
\sum_{-\infty}^{\infty} c_{n}(z-3)^{n}
$$

converges to

$$
f(z):=\frac{4 z+1}{z^{2}-3 z-10}
$$

on the annulus $\{z: 2<|z-3|<5\}$.
7. Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be entire, and suppose there are positive numbers a and b such that $|f(z)|>a$ whenever $|z|>b$. Show that f is a polynomial.
8. Let $p(z)$ and $q(z)$ be two non-trivial polynomials with different degrees. Show that there is no entire $f: \mathbf{C} \rightarrow \mathbf{C}$ such that

$$
|p(z)| \leq|f(z)| \leq|q(z)|
$$

for all $z \in \mathbf{C}$.

