REAL AND COMPLEX ANALYSIS PHD QUALIFYING EXAM

September 19, 2009
The test has two sections, covering real and complex analysis. In order to pass, you must do at least 2 problems from each section completely correctly, and you must do a total of 6 problems completely correctly, or 5 completely correctly with substantial progress on 2 others. Some problems have more than one part (e.g., problem 1 in Section I consists of $1 \mathrm{a}), 1 \mathrm{~b}$), and 1c)).

I. REAL ANALYSIS.

1. Let (X, d) be a metric space. Show that, if $\left\{x_{n}\right\}$ is a sequence in X and $p \in X$, then $x_{n} \rightarrow p$ if and only if every subsequence from $\left\{x_{n}\right\}$ has itself a subsequence that converges to p.

2a) Suppose that $f: \mathbf{R} \mapsto \mathbf{R}$ is differentiable everywhere, and that

$$
\lim _{x \rightarrow \infty} f^{\prime}(x)=0
$$

Show that

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=0
$$

2b) Use 2 a) to prove the following: If $f: \mathbf{R} \mapsto \mathbf{R}$ is differentiable everywhere, and

$$
\lim _{x \rightarrow \infty} f^{\prime}(x)=A
$$

where A is a real number, then

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=A
$$

3. Let $\left\{E_{n}\right\}$ be a sequence of Lebesgue measurable subsets of \mathbf{R} with the property that, for all measurable $A \subset \mathbf{R}$ with finite measure,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m\left(A \backslash E_{n}\right)=0 \tag{1}
\end{equation*}
$$

where $m(\cdot)$ denotes Lebesgue measure. Show that, if f is any Lebesgue integrable function, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbf{R}}\left|f \chi_{E_{n}}-f\right| d m(x)=0 \tag{2}
\end{equation*}
$$

Conversely, show that if (2) holds for all Lebesgue integrable f, then (1) holds for all A with finite measure.
4. Consider $f(x, y, z) \equiv x^{2}-z$ and $g(x, y, z) \equiv x^{2}+y^{2}-z^{2}$, both mapping from \mathbf{R}^{3} into \mathbf{R}, and set $S \equiv\{(x, y, z): f=g=0\}$. We can write $S=P_{0} \cup P_{+} \cup P_{-}$, where
$P_{0}=\{(0,0,0)\}, P_{+}=\{(x, y, z) \in S: x>0\}$, and $P_{-}=\{(x, y, z) \in S: x<0\}$. This question only deals with P_{+}. Find the point or points $\left(x_{0}, y_{0}, z_{0}\right)$ on P_{+}where the Implicit Function Theorem does not guarantee the existence of differentiable functions g_{1} and g_{2}, defined on an open interval $I \underset{\mathbf{R}}{\text { containing }} z_{0}$, such that $\left(g_{1}(t), g_{2}(t), t\right) \in \underset{\mathbf{R}}{P}$ for all $t \in I$.
5. Exhibit an explicit $f \in L^{2}([0,1])$ such that f does not belong to $L^{p}([0,1])$ for any $p \neq 2$. (All L^{p} spaces are defined with respect to the usual Lebesgue measure.)
6. Find, using the appropriate limit theorem or theorems,

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(\sum_{0}^{n} \frac{x^{k}}{k!}\right) e^{-(3 / 2) x} d m(x)
$$

II. COMPLEX ANALYSIS.

In this section, D always denotes the set $\{z \in \mathbf{C}:|z|<1\}$.

1. Use residues to show that, for all $0<a<1$,

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=\frac{\pi}{\sin (\pi a)}
$$

2. Suppose $f: \bar{D} \mapsto \mathbf{C}$ is continuous, f is analytic on D, and $|f(z)|<1$ on the boundary of D. Show that there is a unique $\zeta \in D$ such that $f(\zeta)=\zeta$.
3. Suppose that $f: \mathbf{C} \backslash\{0\} \mapsto \mathbf{C}$ is analytic and, for all $z \neq 0$,

$$
|f(z)| \leq \sqrt{|z|}+\frac{1}{\sqrt{|z|}}
$$

Show that f is constant, but that this constant is NOT unique; i.e., that more than one constant function fills the bill.
4. Show that if $u: \mathbf{R}^{2} \mapsto \mathbf{R}$ is harmonic, i.e.,

$$
u_{x x}+u_{y y}=0
$$

everywhere, and always positive, then u is constant. You don't need to prove this from scratch, but you must cite the results you use from complex analysis.
5. Let

$$
f(z)=\frac{z}{z^{2}-2 z-8}
$$

This function has a Laurent series expansion of the form

$$
f(z)=\sum_{-\infty}^{\infty} c_{n} z^{n}
$$

valid for all z in the annulus $\{z \in \mathbf{C}: 2<|z|<4\}$. Compute the coefficients c_{n}.
6. Suppose that $f: \mathbf{C} \mapsto \mathbf{C}$ is entire and, for all $z \in \mathbf{C}$,

$$
f(z)=f(z+1+i)=f(z+2+i)
$$

Show that f is constant.

