Passing levels:
MS: You must do, in total, at least 4 problems completely correctly, or 3 completely correctly with substantial progress on 2 others. You are free to choose the problems from either or both sections.
PhD: You must do: a) at least 3 completely correctly from each of the two sections; and b) at least 8 completely correctly in total, or 7 completely correctly with substantial progress on 2 others.

Section I: Real analysis.

1. Let $f:[0,1] \rightarrow \mathbf{R}$ be continuous (in the usual $|\cdot|$-based sense) and one-to-one, and suppose that $f(0)<f(1)$. Show that $\forall x, y \in[0,1](x<y \Rightarrow f(x)<f(y))$.
2. Let $f \in L^{1}(\mathbf{R}, \mathcal{L}, m)$, where $(\mathbf{R}, \mathcal{L}, m)$ is the Lebesgue measure space. Show that

$$
\lim _{n \rightarrow \infty} \int f(x) \sin ^{2}(n x) d x
$$

exists and equals

$$
\frac{1}{2} \int f(x) d x
$$

Hint: First show the result for $f=\chi_{(a, b)}$, where (a, b) is a bounded interval.
3. Let A, B be non-empty subsets of \mathbf{R}^{d}, equipped with the usual $\|\cdot\|$-based metric. Show that, if A is compact and B is closed, then there exist points $a \in A$ and $b \in B$ such that, for all $x \in A$ and $y \in B$,

$$
\|a-b\| \leq\|x-y\|
$$

Give an example in \mathbf{R} to show that such points a and b need not exist if A and B are merely assumed to be closed.
4. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be continuous everywhere (in the usual sense) and suppose that

$$
\lim _{|t| \rightarrow \infty} f(t)
$$

exists as a real number. Show that f is uniformly continuous on \mathbf{R}.
5. Define $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $f(x, y):=\left(x^{2}-y^{2}, x(y+1)\right)$. Show that, if $(a, b) \in \mathbf{R}^{2}$ and $|a|>1 / 2$, there is an open set $U_{(a, b)}$ containing (a, b) such that f is one-to-one on $U_{(a, b)}$, $f\left[U_{(a, b)}\right]$ is open, and f has a differentiable inverse function $f^{-1}: f\left[U_{(a, b)}\right] \rightarrow U_{(a, b)}$.
6. Find the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{n} e^{-2 x}\left(\sum_{0}^{n}(-1)^{k} \frac{x^{2 k}}{(2 k)!}\right) d x
$$

(where $(-1)^{0}:=1$), justifying your answer using appropriate limit theorems from measure theory and basic calculus facts about exponentials and power series.
7. Let $f:[0,1] \rightarrow \mathbf{C}$ be continuous in the usual sense, and define

$$
M:=\max _{x \in[0,1]}|f(x)|,
$$

which we know exists because $[0,1]$ is compact. Show that

$$
\lim _{n \rightarrow \infty}\left(\int_{0}^{1}|f(x)|^{n} d x\right)^{1 / n}
$$

exists and equals M.

Section II: Complex analysis.

1. Use residues to show that

$$
\int_{-\infty}^{\infty} \frac{\cos (2 \pi x)}{e^{\pi x}+e^{-\pi x}} d x=\frac{1}{e^{\pi}+e^{-\pi}}
$$

2. Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be entire and not a polynomial. Show that, for all $a \in \mathbf{C}$ and $0<r<\infty$,

$$
f[\mathbf{C} \backslash \Delta(a ; r)]
$$

is dense in \mathbf{C}, where $\Delta(a ; r):=\{z \in \mathbf{C}:|a-z|<r\}$.
3. Set $D:=\{z \in \mathbf{C}:|z|<1\}$. Write down, as a sequence of compositions of analytic bijections, an analytic bijection $f: \Omega \rightarrow \mathcal{H}$, where

$$
\begin{aligned}
\Omega & :=D \backslash((-1,-1 / 2] \cup[1 / 2,1)) \\
\mathcal{H} & :=\{z \in \mathbf{C}: \Re z>0\} .
\end{aligned}
$$

4. Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be entire, with $f(0)=0$. Show that

$$
\phi(z):=\sum_{1}^{\infty} f\left(z / n^{2}\right)
$$

converges for all $z \in \mathbf{C}$ and defines an entire function.
5. Let $\Omega \subset \mathbf{C}$ be a connected open set, and $f: \Omega \rightarrow \mathbf{C}$ and $g: \Omega \rightarrow \mathbf{C}$ both analytic. Suppose that $\bar{f} g$ is analytic, where \bar{f} means f 's complex conjugate. Show that either f is constant or g is identically 0 on Ω.
6. Let

$$
f(z):=\frac{3 z-7}{z^{2}-5 z+6}
$$

Find the Laurent expansion for f which is valid in $\operatorname{ann}(1 ; 1,2):=\{z \in \mathbf{C}: 1<|z-1|<2\}$.
7. State some form of the Maximum Principle for functions f analytic on a connected open $\Omega \subset \mathbf{C}$. Use it (with other standard facts about analytic functions) to prove the following: If $\Omega \subset \mathbf{C}$ is connected and open, $f: \Omega \rightarrow \mathbf{C}$ is analytic, and there is some $a \in \Omega$ such that

$$
\Re f(a) \leq \Re f(z)
$$

for all $z \in \Omega$, then f is constant. We are using $\Re \alpha$ to mean the real part of a complex number α.

