COMBINATORICS QUALIFYING EXAM August 2021

You have four hours to complete this exam.
When working on later parts of a problem, you may assume the results of earlier parts of the same problem without proof.

PhD Pass: Three numbered questions solved completely, or two questions solved completely and substantial progress on two additional questions.

MS Pass: Substantial progress on three questions.

Section A

Question 1

Let G be a simple, undirected, connected graph. For two vertices $a, b \in V(G)$, we let $d(a, b)$ denote the distance between them, i.e. the length of a shortest $a b$-path in G. We let $D(a, b)$ denote the length of a longest $a b$-path in G.
(a) Prove that, for distinct vertices $a, b, c \in V(G)$,

$$
d(a, b)+d(b, c) \geq d(a, c)
$$

(b) Prove that, for distinct vertices $a, b, c \in V(G)$,

$$
D(a, b)+D(b, c) \geq D(a, c)
$$

(c) Prove that $d(a, b)+d(b, c)=d(a, c)$ if and only if b lies on a shortest $a c$-path.

Question 2

Let the Ramsey number $R(k, l)$ denote the smallest integer n such that every red/blue-coloring of K_{n} contains either a blue clique on k vertices or a red clique on l vertices.
(a) Show that $R(2, n)=R(n, 2)=n$.
(b) Show that

$$
R(k, l) \leq R(k-1, l)+R(k, l-1)
$$

(c) Use the previous results to show that $R(k, l) \leq\binom{ k+l}{k}$.

Section B

Question 1

Let d_{k} denote the number of length- k words from the alphabet $\{0,1,2,3\}$ with an even number of 0 s.
(a) Find a recurrence for the d_{k}.
(b) Find a closed formula for the ordinary generating function $D(x)=\sum_{k \geq 0} d_{k} x^{k}$.
(c) Find a closed formula for d_{k} and confirm by direct enumeration that your formula provides the correct answer for $k=3$.

Question 2

A partition λ of n is a weakly decreasing tuple of positive integers: $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$. Let $\operatorname{Par}(n)$ denote the set of partitions of a given integer n.
(a) Give the definition of the dominance partial order, \unlhd, on $\operatorname{Par}(n)$.
(b) Draw the Hasse diagram for the dominance order on Par(6).
(c) Express, in terms of \unlhd, a necessary condition for which monomial symmetric functions m_{μ} can appear in the monomial symmetric function expansion of a given Schur polynomial s_{λ}. (Assume that λ and μ are both partitions of the same integer n.) Make sure to justify your answer.

Section C

Question 1

Recall that the nth standard permutahedron P_{n} is the convex hull in \mathbb{R}^{n} of set of points $(\sigma(1), \ldots, \sigma(n))$ where σ ranges over all permutations in S_{n}. The following questions do not require proofs.
(a) Draw P_{3} and give an inequality description of P_{n} for all n. Hint: You may take the normal vectors for the facets to be $0-1$ vectors.
(b) Express P_{n} as a Minkowski sum of line segments. What is the name for a polytope expressible in this way?
(c) What is the volume of P_{n} ? Hint: Cayley's formula from graph theory.

Question 2

Let G be a bipartite graph with biparition (S, T) of $V(G)$.
(a) Define a transversal matroid M associated to S, and prove that the set of partial transversals satisfy the independent set axioms for a matroid. Hint: augmenting paths.
(b) What is M when G is a complete bipartite graph?
(c) Give an example of a transversal matroid which is not graphic.

