Algebra Qualifying Exam — Fall 2019

You have three hours to complete this exam.
When working on later parts of a problem, you may assume the results of earlier parts of the same problem without proof.

PhD Pass: Four numbered problems solved completely, with at least one problem from each section, plus substantial progress on two other problems.

MS Pass: Nine lettered subproblems, with at least three in two distinct sections, and at least one letter completed in each section.

Note: In this exam $D_{2 n}$ is the dihedral group of order $2 n$ which acts on n elements. If any other notation is confusing, please ask.

Section A

In this section you may quote without proof basic theorems and classifications from group theory as long as you state clearly what facts you are using.

1. Let G be a group of order 105 and assume that G contains a subgroup N of order 15 .
(a) Explain why N is cyclic.
(b) Show that if G does not have a normal 7-Sylow subgroup, then N is normal in G.
(c) Assume N is normal in G. By considering the action of G on N by conjugation, show that N is contained in the center of G, and then show that G is cyclic.
2. Consider the graph depicted below (where the vertices are the solid dots):

An automorphism of a graph is any permutation of vertices that sends edges to edges. Let G be the group of all automorphisms of this graph (the operation is composition).
(a) Explain why G is isomorphic to a subgroup of S_{7}, and that G has three orbits in this action.
(b) Show that the order of G is not divisible by 5 or 7 .
(c) Prove that G is not a simple group.
3. Let $G=D_{8} \times S_{3}$.
(a) Find the center of G.
(b) Is G solvable? Explain.
(c) Exhibit two distinct subgroups of G, both of which are isomorphic to D_{8}.

Section B

4. Let R be a ring with 1 and let M be a simple left R-module (this means that M has no left R-submodules other than 0 and M).
(a) If $\varphi: M \rightarrow M$ is a non-trivial R-module homomorphism (i.e. an endomorphism), show that φ is an isomorphism.
(b) Show that if $m \in M$ with $m \neq 0$, then $M=R m$.
(c) Show that there is a left R-module isomorphism $M \cong R / \mathfrak{m}$ for some maximal left ideal \mathfrak{m} of R.
5. Let $R=\mathbb{R}[x] /\left(x^{4}-1\right)$, so R is a commutative ring with 1 .
(a) Show that all ideals of R are principal.
(b) Find a generator for each maximal ideal of R.
(c) For each maximal ideal \mathfrak{m}, describe an isomorphism from R / \mathfrak{m} to either \mathbb{R} or \mathbb{C}.
6. Let R be a commutative ring with 1 which is a subring of the commutative ring S. Let P be a prime ideal of S.
(a) Show that $P \cap R$ is a prime ideal of R.
(b) Show that $P[x]$ is a prime ideal of $S[x]$.
(c) Show that $P[x]$ is not a maximal ideal of $S[x]$.

Section C

7. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and let $\alpha=\sqrt{2}-\sqrt{3}$.
(a) Show that $[L(\sqrt{\alpha}): L]=2$ and $[L(\sqrt{\alpha}): \mathbb{Q}]=8$.
(b) Find the minimal polynomial of $\sqrt{\alpha}$ over \mathbb{Q}.
(c) Show that $L(\sqrt{\alpha})$ is not Galois over \mathbb{Q}.
8. Let α be the real, positive fourth root of 5 , and let $i=\sqrt{-1} \in \mathbb{C}$. Let $K=\mathbb{Q}(\alpha, i)$.
(a) Explain why K / \mathbb{Q} is a Galois extension with Galois group dihedral of order 8.
(b) Find the largest abelian extension of \mathbb{Q} in K (i.e. the unique largest subfield of K that is Galois over \mathbb{Q} with abelian Galois group) - justify your answer.
(c) Show that $\alpha+i$ is a primitive element for K / \mathbb{Q}.
9. Let V be the field of 3^{6} elements and let $F \subset V$ be the field of 3 elements, so that V is a 6 -dimensional vector space over F. Define

$$
T: V \rightarrow V \quad \text { by } \quad T(a)=a^{3} \quad \text { for all } a \in V
$$

(T is called the Frobenius automorphism of V.)
(a) Explain why T is an F-linear transformation from V to itself and $T^{6}=I$, where I is the identity linear transformation. (You may quote without proof facts about finite fields and their Galois theory as long as you state these explicitly.)
(b) Show that $x^{6}-1$ is both the minimal polynomial and the characteristic polynomial for the linear transformation T.
(Hint: Suppose T satisfies a polynomial of lower degree.)
(c) Find the Jordan canonical form for the linear transformation T.

