Algebra Qualifying Exam — Fall 2019

You have three hours to complete this exam.

When working on later parts of a problem, you may assume the results of earlier parts of the same problem without proof.

- **PhD Pass:** Four numbered problems solved completely, with at least one problem from each section, plus substantial progress on two other problems.
- **MS Pass:** Nine lettered subproblems, with at least three in two distinct sections, and at least one letter completed in each section.

Note: In this exam D_{2n} is the dihedral group of order 2n which acts on n elements. If any other notation is confusing, please ask.

Section A

In this section you may quote without proof basic theorems and classifications from group theory as long as you state clearly what facts you are using.

- 1. Let G be a group of order 105 and assume that G contains a subgroup N of order 15.
 - (a) Explain why N is cyclic.
 - (b) Show that if G does not have a normal 7-Sylow subgroup, then N is normal in G.
 - (c) Assume N is normal in G. By considering the action of G on N by conjugation, show that N is contained in the center of G, and then show that G is cyclic.
- 2. Consider the graph depicted below (where the vertices are the solid dots):

An *automorphism* of a graph is any permutation of vertices that sends edges to edges. Let G be the group of all automorphisms of this graph (the operation is composition).

- (a) Explain why G is isomorphic to a subgroup of S_7 , and that G has three orbits in this action.
- (b) Show that the order of G is not divisible by 5 or 7.
- (c) Prove that G is not a simple group.

3. Let $G = D_8 \times S_3$.

- (a) Find the center of G.
- (b) Is G solvable? Explain.
- (c) Exhibit two distinct subgroups of G, both of which are isomorphic to D_8 .

Section B

- 4. Let R be a ring with 1 and let M be a *simple* left R-module (this means that M has no left R-submodules other than 0 and M).
 - (a) If $\varphi \colon M \to M$ is a non-trivial *R*-module homomorphism (i.e. an endomorphism), show that φ is an isomorphism.
 - (b) Show that if $m \in M$ with $m \neq 0$, then M = Rm.
 - (c) Show that there is a left *R*-module isomorphism $M \cong R/\mathfrak{m}$ for some maximal left ideal \mathfrak{m} of *R*.
- 5. Let $R = \mathbb{R}[x]/(x^4 1)$, so R is a commutative ring with 1.
 - (a) Show that all ideals of R are principal.
 - (b) Find a generator for each maximal ideal of R.
 - (c) For each maximal ideal \mathfrak{m} , describe an isomorphism from R/\mathfrak{m} to either \mathbb{R} or \mathbb{C} .
- 6. Let R be a commutative ring with 1 which is a subring of the commutative ring S. Let P be a prime ideal of S.
 - (a) Show that $P \cap R$ is a prime ideal of R.
 - (b) Show that P[x] is a prime ideal of S[x].
 - (c) Show that P[x] is not a maximal ideal of S[x].

Section C

- 7. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and let $\alpha = \sqrt{2} \sqrt{3}$.
 - (a) Show that $[L(\sqrt{\alpha}) : L] = 2$ and $[L(\sqrt{\alpha}) : \mathbb{Q}] = 8$.
 - (b) Find the minimal polynomial of $\sqrt{\alpha}$ over \mathbb{Q} .
 - (c) Show that $L(\sqrt{\alpha})$ is not Galois over \mathbb{Q} .
- 8. Let α be the real, positive fourth root of 5, and let $i = \sqrt{-1} \in \mathbb{C}$. Let $K = \mathbb{Q}(\alpha, i)$.
 - (a) Explain why K/\mathbb{Q} is a Galois extension with Galois group dihedral of order 8.
 - (b) Find the largest abelian extension of \mathbb{Q} in K (i.e. the unique largest subfield of K that is Galois over \mathbb{Q} with abelian Galois group) justify your answer.
 - (c) Show that $\alpha + i$ is a primitive element for K/\mathbb{Q} .
- 9. Let V be the field of 3^6 elements and let $F \subset V$ be the field of 3 elements, so that V is a 6-dimensional vector space over F. Define

$$T: V \to V$$
 by $T(a) = a^3$ for all $a \in V$.

(T is called the Frobenius automorphism of V.)

- (a) Explain why T is an F-linear transformation from V to itself and $T^6 = I$, where I is the identity linear transformation. (You may quote without proof facts about finite fields and their Galois theory as long as you state these explicitly.)
- (b) Show that x⁶-1 is both the minimal polynomial and the characteristic polynomial for the linear transformation T.
 (Hint: Suppose T satisfies a polynomial of lower degree.)
- (c) Find the Jordan canonical form for the linear transformation T.