COMBINATORICS QUALIFYING EXAM

 January 2022You have four hours to complete this exam.
When working on later parts of a problem, you may assume the results of earlier parts of the same problem without proof.

This exam has six questions, each with three parts (a,b,c).
PhD Pass: Three numbered questions solved completely, or two solved completely with substantial progress on another two.

MS Pass: Substantial progress on three questions.

Question 1

(a) State Menger's Theorem (in the context of graph vertex-connectivity).
(b) Let G be a simple k-vertex-connected graph and v a vertex of G. Let C be a cycle in G of length $l \leq k$, that does not contain v. Show that there is a set of $l v w$-paths, one for each vertex w on C, that are disjoint except at v.
(c) Show that if G is k-vertex-connected, it must contain a cycle of length $>k$.

Question 2

(a) Give the definition of the the Turán number or extremal number ex (n, H), where n is a positive integer and H is a graph.
(b) Determine the value of ex $\left(n, P_{4}\right)$ for all n, where P_{4} is the path graph on 4 vertices (and 3 edges). If it is convenient, you may assume that $n \equiv 0(\bmod k)$ for an appropriate natural number k.
(c) Give an example of a graph that is edge-maximal without a P_{4} subgraph, but not extremal.

Question 3

Let c_{n} be the (maximum) number of regions on a piece of paper determined by n intersecting circles. Note: Each circle must intersect each other circle; no two circles are tangent; assume no three circles intersect at a point; include "infinite" regions.
(a) Gather data by drawing pictures for $n \leq 4$ circles and computing c_{n} directly.
(b) Find a recurrence relation for c_{n} (include initial conditions!).
(c) Use generating functions to find and prove a closed formula for $c_{n}, n \geq 0$.

Aside (not for credit): What does your answer tell you about Venn diagrams?

Question 4

(a) State the Pieri rule for h_{n}.
(b) Use the Pieri rule to find the Schur expansion of the $h_{(2,1,3)}$.
(c) How do the Kostka numbers arise in your answer to part (b)?

Question 5

(a) Give the independent set axioms for a matroid.
(b) Give the circuit axioms for a matroid.
(c) Given a ground set E and a collection I of subsets of E which satisfy the independent sets axioms, define the circuits of the matroid in terms of I, and prove that they satisfy the circuit axioms.

Question 6

(a) Give the vertex definition of a convex polytope.
(b) Give the half-space definition of a convex polytope.
(c) Let M be a uniform matroid \mathcal{U}_{n}^{r}, and let P_{M} be the associated matroid polytope. Give both vertex and half-space presentations of P_{M}. Remark: These polytopes are also known as hypersimplices.

