You have three hours to complete this exam. When working on later parts of a problem, you may assume the results of earlier parts of the same problem without proof.

PhD Pass: Four numbered problems solved completely, with at least one problem from each section, plus substantial progress on two other problems.

MS Pass: Nine lettered subproblems, with at least three in two distinct sections, and at least one letter completed in each section.

Note: In this exam \(D_{2n} \) is the dihedral group of order \(2n \) which acts on \(n \) elements. If any other notation is confusing, please ask.
Section A

In this section you may quote without proof basic theorems and classifications from group theory as long as you state clearly what facts you are using.

1. Let G be a group of order 105 and assume that G contains a subgroup N of order 15.
 (a) Explain why N is cyclic.
 (b) Show that if G does not have a normal 7-Sylow subgroup, then N is normal in G.
 (c) Assume N is normal in G. By considering the action of G on N by conjugation, show that N is contained in the center of G, and then show that G is cyclic.

2. Consider the graph depicted below (where the vertices are the solid dots):

 An automorphism of a graph is any permutation of vertices that sends edges to edges. Let G be the group of all automorphisms of this graph (the operation is composition).
 (a) Explain why G is isomorphic to a subgroup of S_7, and that G has three orbits in this action.
 (b) Show that the order of G is not divisible by 5 or 7.
 (c) Prove that G is not a simple group.

3. Let $G = D_8 \times S_3$.
 (a) Find the center of G.
 (b) Is G solvable? Explain.
 (c) Exhibit two distinct subgroups of G, both of which are isomorphic to D_8.
Section B

4. Let R be a ring with 1 and let M be a simple left R-module (this means that M has no left R-submodules other than 0 and M).

(a) If $\varphi : M \to M$ is a non-trivial R-module homomorphism (i.e. an endomorphism), show that φ is an isomorphism.

(b) Show that if $m \in M$ with $m \neq 0$, then $M = Rm$.

(c) Show that there is a left R-module isomorphism $M \cong R/m$ for some maximal left ideal m of R.

5. Let $R = \mathbb{R}[x]/(x^4 - 1)$, so R is a commutative ring with 1.

(a) Show that all ideals of R are principal.

(b) Find a generator for each maximal ideal of R.

(c) For each maximal ideal m, describe an isomorphism from R/m to either \mathbb{R} or \mathbb{C}.

6. Let R be a commutative ring with 1 which is a subring of the commutative ring S. Let P be a prime ideal of S.

(a) Show that $P \cap R$ is a prime ideal of R.

(b) Show that $P[x]$ is a prime ideal of $S[x]$.

(c) Show that $P[x]$ is not a maximal ideal of $S[x]$.
Section C

7. Let \(L = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \) and let \(\alpha = \sqrt{2} - \sqrt{3} \).

(a) Show that \([L(\sqrt{\alpha}) : L] = 2\) and \([L(\sqrt{\alpha}) : \mathbb{Q}] = 8\).

(b) Find the minimal polynomial of \(\sqrt{\alpha} \) over \(\mathbb{Q} \).

(c) Show that \(L(\sqrt{\alpha}) \) is not Galois over \(\mathbb{Q} \).

8. Let \(\alpha \) be the real, positive fourth root of 5, and let \(i = \sqrt{-1} \in \mathbb{C} \). Let \(K = \mathbb{Q}(\alpha, i) \).

(a) Explain why \(K/\mathbb{Q} \) is a Galois extension with Galois group dihedral of order 8.

(b) Find the largest abelian extension of \(\mathbb{Q} \) in \(K \) (i.e. the unique largest subfield of \(K \) that is Galois over \(\mathbb{Q} \) with abelian Galois group) — justify your answer.

(c) Show that \(\alpha + i \) is a primitive element for \(K/\mathbb{Q} \).

9. Let \(V \) be the field of \(3^6 \) elements and let \(F \subset V \) be the field of 3 elements, so that \(V \) is a 6-dimensional vector space over \(F \). Define

\[T: V \to V \text{ by } T(a) = a^3 \text{ for all } a \in V. \]

\(T \) is called the Frobenius automorphism of \(V \).

(a) Explain why \(T \) is an \(F \)-linear transformation from \(V \) to itself and \(T^6 = I \), where \(I \) is the identity linear transformation. (You may quote without proof facts about finite fields and their Galois theory as long as you state these explicitly.)

(b) Show that \(x^6 - 1 \) is both the minimal polynomial and the characteristic polynomial for the linear transformation \(T \).

(Hint: Suppose \(T \) satisfies a polynomial of lower degree.)

(c) Find the Jordan canonical form for the linear transformation \(T \).