Instructor: Matthias Brewer, Innovation Hall Rm 343 (Matthias.Brewer@uvm.edu)

Office hours: Tuesday, Thursday, Friday 2:00pm-3:00pm or by appointment

Lecture: 10:50am – 11:40am MWF, Innovation Hall Rm 432

Laboratory: Monday 5:05 – 7:50pm; Tuesday 8:30 – 11:15am; 2:50 – 5:35pm; 6:00 – 8:45pm Discovery Building, Room 409

Laboratory Check-in / ChemDraw Tutorial – September 9 and 10

Required Course Materials:
(The first three items are available as a package from the UVM bookstore.)

Sapling Learning account: account can be purchased as part of book order, or separately

Recommended Course Materials:

Molecular Structure Models (e.g.: ISBN: 0471-362719)

Books in the Howe library that may be useful:

Writing Reaction Mechanisms in Organic Chemistry A. Miller ISBN: 0-12-496711-6

Course Prerequisite: Chem 31/32 or solid high school chemistry experience (AP or Honors).
This course will address learning goals 1, 2, 3, and 5 below for chemistry majors:

1. Students will demonstrate general knowledge in chemistry and will be able to apply chemical and physical principles in the solution of qualitative and quantitative chemical problems.
2. Students will understand the interplay of observational data, hypotheses, and hypothesis-driven experimentation through application of the scientific method.
3. Students will become proficient in chemical laboratory techniques and be able to apply these to practical and current problems in research.
4. Students will be able to read and critically evaluate the chemical and scientific literature.
5. The students will learn to present scientific data clearly and effectively through both written and verbal communication.

Course Description

In Chemistry 047 we begin an exploration of the basic principles of Organic Chemistry. You will find that Organic Chemistry involves many new concepts, a large number of rules and (by the end of the second semester) a large number of reaction mechanisms. However, as the course progresses and your knowledge grows, you will find that a relatively small subset of concepts tie together the vast amount of information contained in the text. Learning these underlying principles and knowing when and how to apply them to solve problems is the key to success. You have seen many of these concepts in General Chemistry, but here they will be considered from a different point of view. For example, knowing the relative electronegativity of atoms is essential to understanding why molecules react the way they do – electronegativity allows you to rationalize why some atoms are good leaving groups and others are not. A special effort made at the beginning of the course to learn how to write proper structures with the correct number of bonds, formal charges, and unshared pairs of electrons is important. Also, in addition to knowing the relative electronegativity of atoms, knowing Lewis acid-base theory, Bronstead-Lowry acid-base theory, and the rules for writing proper contributing “structures” to resonance hybrids will make the understanding of reaction mechanisms considerably easier.

Organic Chemistry is not inherently difficult, but it is different than any chemistry you have seen so far. Although the lecture only meets for 3 hours a week, you will need to do a substantial amount of work outside of class (figure at least 2 to 3 hours per lecture) to learn and practice the material. I strongly urge you to keep up with reading the textbook outside of class and work as many of the suggested problems as possible – problem solving is the best way to learn this material! You will need to learn new concepts and then apply those concepts in new situations, which will take a slow and steady approach...cramming does not work well in this subject!

Academic Conduct:

Cheating will be considered grounds for failing the course. Cases of cheating or plagiarism on the lecture exams or laboratory reports will lead to further disciplinary action which may include dismissal from the University according to the rules set forth in
The University of Vermont’s *Code of Academic Integrity*. You may discuss take home quizzes and sapling assignments with your peers and use these as group study aids. However, these exercises are *learning opportunities* and should be used as such. If you just blindly copy your friend’s work you will not get anything from the exercise, which will become painfully clear to you on the exam!

Grading:

Your course grade will be based on on-line homework assignments, take home quizzes, three examinations, a cumulative final examination, and your laboratory grade. *(Note: You must earn a passing grade in the laboratory to receive a passing grade for the course. More than two laboratories missed for any reason will result in a failing grade for the course unless you are granted an incomplete by your Dean).*

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab</td>
<td>20%</td>
</tr>
<tr>
<td>Take home Quizzes</td>
<td>15%</td>
</tr>
<tr>
<td>Online Homework</td>
<td>5%</td>
</tr>
<tr>
<td>3 Midterm Exams</td>
<td>40%</td>
</tr>
<tr>
<td>Cumulative Final</td>
<td>20%</td>
</tr>
</tbody>
</table>

Midterm Exams will last for 2 hours and will be given during the Chem. 51 laboratory time slots, which meet Thursdays 8:30 to 12:30 and 1:15 to 5:15:

If you are registered for Chem 051, please plan to take the exam during your normally scheduled Chem 51 time slot in your Chem 051 lab room. If you are not scheduled for Chem. 51, please contact me to discuss options.

The exams will be given on:

- **September 19**
- **October 17**
- **November 14**

Final Exam Date:

- **Monday, Dec 9**
 - 10:30 A.M.- 1:15 P.M.
 - Innovation Hall 432

On-line homework: Due each week on Friday at 11:55 PM. No homework will be assigned the week after an exam. No homework grades will be dropped.

Extra Credit: *BACON: Biology and Chemistry Online Notes and Tutorials*

‘BACON’ tutorials are a handy resource created by students and faculty at UCLA that are designed to help connect the wonders of organic chemistry to medicine, other aspects of real life, and even pop culture.

You will have 6 BACON tutorials available this term. Each time you complete a BACON tutorial, you will also complete a brief multiple choice post-BACON quiz (*the quiz will be built into the tutorials*). For each tutorial you complete with a quiz grade of at least 75% you will earn 1 additional exam point that will be added to the sum of your midterm grades.
To create your account visit bacon.chem.ucla.edu and click ‘Sign Up’. Follow the instructions and then register for the appropriate course. The Course Pin number is Orbital.

The BACON system is simple and automated. You will receive emails when tutorials become available, in addition to reminders if you have not completed a tutorial as a deadline approaches.

The Department of Chemistry at the University of Vermont has decided to pre-pay the typical student fee for using BACON, so it will be available to you at no charge! Thanks Professor Landry!

No exam grades are dropped. The only valid excuses for missing an exam are medical or other true emergency situations. If you miss an exam for such a reason, you must inform me of it promptly, present appropriate documentation of your excuse, and receive formal approval to take a make up exam. If you miss an exam for any other reason, you will receive a grade of zero for that exam. The answers to exam problems will be posted after each exam. If you have any questions concerning the grading of an exam, you must see me within one week after the day the exam is returned to the class. Exams must be taken in ink to insure that you can get points for a grading error.

The lowest quiz score will be dropped and will be replaced by the average score of the nine remaining quizzes.

Religious Holidays: Students have the right to practice the religion of their choice. Each semester students should submit in writing to their instructors by the end of the second full week of classes their documented religious holiday schedule for the semester. Faculty must permit students who miss work for the purpose of religious observance to make up this work.
Outline of Course

Chapter 1. Chemical Bonding and Chemical Structure.
Sections: All sections
Suggested Problems: 1.3-1.6, 1.8, 1.9, 1.12, 1.13, 1.22-1.25, 1.30-1.32, 1.44, 1.48

Chapter 3. Acids and Bases: The curved arrow notation
Sections: 3.1-3.6
Suggested Problems: 3.1-3.15, 3.18, 3.19, 3.24-3.45, 3.54-3.55, 3.58

Chapter 2. Alkanes.
Sections: 2.1-2.5, 2.8
Suggested Problems: 2.1, 2.3-2.18, 2.23, 2.24, 2.26-2.39, 2.47-2.50

Chapter 4. Introduction to Alkenes: Structure and Reactivity
Sections: All sections
Suggested Problems: 4.2-4.10, 4.13, 4.14, 4.16-4.48, 4.50-4.60a, 4.61, 4.62, 4.64-4.67

Chapter 5. Addition Reactions of Alkenes
Sections: All sections
Suggested Problems: 5.1-5.52a, 5.52d-g

Chapter 6. Principles of Stereochemistry
Sections: All sections

Chapter 7. Cyclic Compounds: Stereochemistry of reactions
Sections: All Sections

Chapter 8. Noncovalent Intermolecular Interactions
Sections: 8.1-8.3
Suggested Problems: 1-8, 15, 28, 32

Chapter 9. The Chemistry of Alkyl Halides
Sections: All Sections
Suggested Problems: 1-5, 11-16, 21-25, 44c,d,e,f, 45a-e, 46b-f, 49, 50a,c, 51-56, 61, 67

Chapter 10. The Chemistry of Alcohols and Thiols
Sections: 10.1-10.7
Suggested Problems: 3-17, 19-21, 23-26, 28, 30-31, 38-40, 45, 47-51, 57, 59, 67, 68

Sections 11.1-11.6, 11.8, 11.10, and Chapter 14 Section 14.8
Suggested Problems: 1-28, 32, 38-40a,b,d, 44-45c-j, 46, 48, 50, 51, 53-60, 61a-c,e-k, 62-65, 69, 70, 72, 74, 77, 79, 80

Concepts you must understand from High School / General Chemistry:
- Properties of covalent bonds
- The octet rule
- Structural isomers
- Lewis dot structures
- Formal charges
- Resonance
- Electronegativity and bond polarity
- VSEPR (Valence Shell Electron Pair Repulsion)
- Hybridization

Key’s to success in Organic Chemistry:
- Do not try to cram!
- You will see many new concepts in this course. Try to write out an explanation of the concepts in your own words as if explaining them to someone else.
- Work as many practice problems as possible. Practice problem reinforce the new concepts and are the only way to test your understanding of the material.
- Do not look at a problem’s answer until you have really tried the problem. After seeing the answer it often seems obvious and you may assume you understand.
- When you get a problem wrong, try to understand where your thinking was in error and attempt to identify what concept you missed.
- Ask questions!
- Come to office hours to resolve any questions early!
- Review the material frequently.